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Abstract

Comments in software code are intended to help developers understand the code. In contrast to code
itself which is executed by a machine, comments are primarily written for humans. Previous work
has shown that code understanding dominates a professional developer’s time, which emphasizes the
importance of studying comments. The study of code comment consistency involves assessing whether
written comments are consistent with the code they are associated with. In this work, we apply large
language models to the problem of detecting inconsistent comments. Our project addresses a major
gap in previous work, with 90% of previous studies focusing on Java. In reproducing past results, we
also discover a significant annotation artifact that likely caused misleading results in the past. We find
that a simple classifier which predicts only based on the number of newlines at the end of the example
would achieve 80% accuracy.

To extend beyond previous work, we build a novel dataset of more than 80,000 examples of code
and comment pairs across 4 programming languages: Java, Python, Go, and JavaScript. We find
that fine-tuned versions of CodeBERT and Codegen outperform previously developed deep learning
networks across all studied languages. Furthermore, we contribute a new manually curated benchmark
set of 100 examples of inconsistent comments from real-world pull requests and perform a field study by
submitting 20 pull requests that fix detected issues. This benchmark set was constructed by analyzing
a newly mined dataset of more than 13 million comments from GitHub pull requests. On this hand-
crafted benchmark evaluation set, we observe lower performance from all models than observed during
training, which highlights the need to consider real-world conditions when building models. To study
how developers value fixing the problem of inconsistent comments, we sent 20 pull requests to open
source projects on GitHub. With 90% of pull requests accepted, we find that developers are receptive
to automated comment consistency detection, validating its purpose in the open source setting.

The code and data used in this project are published on GitHub.1

1https://github.com/pelmers/llms-for-code-comment-consistency
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Chapter 1

Introduction

In this section, we will establish a context for the study of code comment consistency and provide some
motivation for the project.

1.1 Context

1.1.1 Code and Comments

In software development, comments are text annotations embedded into code for the benefit of hu-
mans. Whereas code itself is interpreted by a machine into executable instructions, comments in source
code are ignored by the machine and in most cases only provide value for other humans. Because these
comments are ignored by the computer and thus do not need to follow any structure or syntactic rules,
they can vary greatly in purpose and style.

1 def gcd (a , b) :
" " " Find the g r e a t e s t common d i v i s o r of i n t e g e r s (a , b) .
" " "

m = min(a , b)
f o r i in range (m, 0 , −1) :

6 i f a % i == 0 and b % i == 0:
re turn i

Listing 1.1: Documentation comment example in Python

Listing 1.1 shows an example of a comment in the Python language. This type of comment is
known as a documentation comment, which in general will describe the overall functionality of a func-
tion without going into very specific details about its implementation. Listing 1.2, also written in
Python, introduces the inline comment. This type of comment is usually written to give more detailed
documentation about specific lines of code, for example to explain the reasons for a particular choice
or to give a more easily understandable alternative to a particularly complex section. In this example,
the math formula involving subtraction and the modulus operator is explained in words.

Chapter 2 gives a more precise definition of the particular type of comments considered in this
study.

def pad_with_zeros ( str_num ) :
’ ’ ’

3 Return a s t r i n g with zeros i n s e r t e d at the s t a r t of the s t r i n g str_num
such tha t i t s length i s d i v i s i b l e by 3 .
’ ’ ’
i f len ( str_num ) % 3 == 0:

re turn str_num
8 e l s e :

# I n s e r t e i t h e r 1 or 2 ’ 0 ’ c h a r a c t e r s by tak ing the remainder of d i v i s i o n by 3
# and turn ing 1 in to 2 , 2 in to 1 .
re turn ’ 0 ’ *(3 − len ( str_num ) % 3) + str_num

Code and Comment Consistency Classification with Large Language Models 1
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Listing 1.2: Inline comment example in Python

1.2 Motivation

1.2.1 Programming Bottleneck

The key insight which underlies the motivation of this project is that in real industry applications,
developers spend much more time reading code than writing it. In fact, up to 83% of a professional
developer’s programming time is spent on code navigation and understanding.[48] In a company, every
line of code is written once but must be understood by every developer who will use it. To accelerate
the process of understanding, disciplined programmers will add comments to their code. Comments
in code are natural language statements which are ignored by the program execution and are intended
solely for the benefit of the reader. A well-written and up-to-date comment can therefore let the reader
understand the intention of the adjacent code without needing to fully trace out each line the computer
will run.[37]

On the other hand, poorly written, mistaken, or obsolete comments can lead to immense frustra-
tion and accumulation of technical debt.[7] When other developers read such comments, they would
assume the behavior matches the written description, but then encounter surprise when the program
performs something else. In some cases they may not even notice at first, leading to even greater de-
bugging difficulty in the future as more and more layers of code builds upon it before the mistake is
eventually uncovered.

1.2.2 Multiple Programming Languages

In the modern software industry, companies choose to use programming languages for their charac-
teristic strengths and weaknesses.[27] This specialization of tooling means that even within a single
company, multiple programming languages may be used for different purposes. However, existing
research in the field of software comment analysis focuses heavily on the Java language[30], where
the specific style of commenting and development patterns may not carry over to other languages.
For example, method comments in Java are often partially generated by integrated development en-
vironments (IDEs), which give a uniform style and consistent standards even across different projects.
Java also tends to have longer variable names than other languages which have a stronger focus on
succinctness.

Novelty is another motivation for the topic of this study. As far as we could identify, no accessible
and labeled dataset of code and comment pairs exists for languages outside of Java.[49] The creation
of such datasets could encourage future work in the topic of studying code comment consistency across
a broader range of language contexts.

1.2.3 Application of Large Language Models

Large language models are mathematical representations of language that are capable of making tex-
tual predictions such as the next word in a sentence or whether a given text review is positive or
negative. The large in the name refers to the number of numerical parameters in the representation,
normally at least several hundred million values. For example, ChatGPT is a large language model.
Given recent successes in applying large language models[24] in text analysis settings, we see poten-
tial in harnessing them for the task of detecting inconsistent comments, thus improving the quality of
software and the development experience. Most past research in source code comment classification
has used heuristic techniques based on factors such as the number of overlapping words between the
comment and the function code, leaving room for exploration of machine learning methods.[30] Al-
though using a large language model is not a guaranteed method for success by any means, we are
motivated by the technique’s success in other contexts and see its potential in this problem setting as
well.
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1.3 Thesis Organization

The rest of the thesis is organized as follows.

• Chapter 2 formulates the main research goals and poses the core research questions for this
project.

• Chapter 3 provides background information from academic literature of current work on the
topic.

• Chapter 4 describes the methodology followed in this project to answer the primary research
questions.

• Chapter 5 presents the results of work on each research question with analysis.

• Chapter 6 discusses the validity of the found results, investigating potential explanations and
highlighting possible risks.

• Chapter 7 concludes the work by summarizing the methods and findings of the paper.
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Chapter 2

Problem Formulation

In this chapter we formulate the problem and present our research questions. In Figure 2.1 we illustrate
the overarching goal of comment consistency detection in terms of its inputs and outputs.

Figure 2.1: Code Comment Consistency Detection

2.1 Problem Statement

A critical component of effective software development is documentation of source code. The most
time-consuming activity of a professional developer is code navigation and understanding, and com-
ments in code directly help with this task.[48]. As software projects grow, new code is written and old
code is modified. However, whereas the execution of the software tests the function of the code, there
is no mechanism to ensure that comments remain consistent with the code they are describing.

The problem this research project seeks to address is how to apply large language models to the
real-world problem of detecting inconsistent comments across code in multiple programming languages.

Meaning of Consistency In this description, the word inconsistent deserves a section to clarify its
meaning.

Definition 1. A comment is consistent with its associated code if a qualified expert reviewer explicitly
deems it as such.

This definition encompasses a broad spectrum of potential sources of inconsistencies. A qualified
expert reviewer should be someone who is not the author of a code change but is also knowledgeable in
the project in which the change was authored. The concept of consistency proposed in this formulation
most closely matches the definition of coherence introduced by Steidl et al.[37] While every reviewer
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will have his or her own standards, we expect that this definition will align several commonly studied
assessment metrics, including understandability, completeness, and accuracy. [30]

We demonstrate an example of the difference between a consistent and inconsistent comment in
Listing 2.2. In this example, we reproduced the correct example of Listing 1.1 along with a version
with a modified comment to give an example of both a consistent and an inconsistent comment. The
comment is inconsistent because the code returns the greatest common divisor, but the comment refers
to the least common multiple.
def gcd (a , b) :

" " " Find the g r e a t e s t common d i v i s o r
of i n t e g e r s (a , b) .

" " "
4 m = min(a , b)

f o r i in range (m, 0 , −1) :
i f a % i == 0 and b % i == 0:

re turn i

Listing 2.1: Consistent Documentation
comment example

def gcd (a , b) :
" " " Find the l e a s t common mul t ip l e of

i n t e g e r s (a , b) .
3 " " "

m = min(a , b)
f o r i in range (m, 0 , −1) :

i f a % i == 0 and b % i == 0:
re turn i

Listing 2.2: Inconsistent Documentation
comment example

However, although Definition 1 gives the ideal method of determining whether a comment is con-
sistent, is not practical in a supervised learning setting. Because it would require asking an expert for
their opinion for every potential example, we could not build an adequately large dataset with which
to train a model. Therefore, we introduce the following definition, given by Panthaplackel et al.[28],
which is more conducive to a weak supervision setting.

Definition 2. Given a version control change that modifies both a function’s code and its documentation
comment, we define the old comment as inconsistent with the new code, and the new code as consistent
with the new comment.

In effect, one of the outcomes of this project is a measurement of the alignment between these two
definitions. This work follows the model of previous studies by assuming Definition 2 can reasonably
substitute for Definition 1. In this work, we thus refer to Definition 1 as the gold standard and
Definition 2 as the silver standard.

Meaning of Real-world Another vital term to clarify from the problem statement is real-world.
Specifically, the term real-world in this case refers to matching an expected use case of software devel-
opment as closely as possible. For this project, the use case of choice is code review. Code review is
a standard practice in the software industry where someone other than the author of a piece of code
reviews it and decides whether to approve it or not. In Figure 2.2, we present an example of a pull
request that was accepted in review. In this case, r+ is a shorthand expression meaning approval.

At this stage, one of the aspects considered is the quality of comments. In practice, the goal of this
project is to create an additional layer of code review that is specialized for checking comments. This
is important because even after code review, researchers have observed examples of code commits
which solely fix mistaken comments.[44] This phenomenon indicates that a tool which can reliably
discern consistent from inconsistent comments at review time would improve developer productivity
by reducing the time spent later fixing previous mistakes.

Thus, a real-world evaluation of comment consistency checking would involve testing it against
examples of code review scenarios.[49] Chapter 4 expands upon the exact procedures for finding and
extracting these examples from software projects.
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Figure 2.2: Example of reviewed pull request on GitHub

2.2 Problem Scope

This section explains the project scope in terms of the studied languages, and the setting of the real-
world aspect of this research.

2.2.1 Language Selection

Every programming language has its own syntax and conventions. A model trained on Python code will
likely not perform as well when it receives an input of JavaScript code. Java comments, for example,
follow the well-defined Javadoc standard [38] and appear before the function expression, while Python
function comments are formatted differently, written as a string after the definition line.

With the focus of previous work on the Java language, one goal of this project is to generalise
the model to Python, JavaScript, and Go. This language selection is motivated by popularity in the
open source community. Selecting languages by popularity promises the advantages of the broadest
applicability and the most availability of training data. As a preliminary for this project, we mined
the metadata for more than 3 million GitHub repositories[6], consisting of all public repositories with
at least 5 stars on GitHub from 2009 until May 2023. Figure 2.3 plots a bar chart of the number of
repositories by language on GitHub.

Note that TypeScript is a syntactically very similar superset of JavaScript, so for the purposes of
this analysis we will consider the two languages together. Also, we selected Go instead of PHP or C,

Figure 2.3: Number of software repositories by language on GitHub[6]
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which ranked ahead of it on strict popularity, because Go uses a standardized documentation format
with godoc. [14]

2.2.2 Real-world Context

The second half of the problem statement pertains to the real-world aspect of the research, where we
define the real-world use case as open source development on GitHub. This scope includes two distinct
contexts.

• Evaluation of existing examples: existing open source development contains a rich collection of
expert annotated comment consistency examples in the form of past pull request review. In other
words, we can retrieve previous examples of fixed inconsistent comments as a result of expert
review and test whether our methods produce a tool that would also correctly identify the same
mistake.

• Human response to novel contributions: a new developer tool is only useful if human developers
are willing to use it. Therefore, part of answering the problem statement is to find out how
people react to the usage of such a tool. In this case, we model usage of the tool in the real world
in the open source world via pull requests.

By considering both existing and new examples in the open source context of GitHub pull requests,
this research aims to assess the ability of the proposed approach to detect inconsistent comments in
the real world.

2.3 Limitations of Past Work

2.3.1 Focus on Java

A systematic literature review by Rani et al.[30] surveyed the research in this field from 2011 to 2020.
From the 47 studied papers, the authors identified several trends and gaps where future work could
focus. For example, 87% of existing work studied the Java programming language. Indeed, all previous
works that relate most closely to the setting in this project were studies conducted on the Java language.
In a polyglot software ecosystem this singular focus on one language might lack important context in
other languages or lead to assessment methods that only work in Java.

Figure 2.4 visualizes the most popular project categories per language with word clouds of each
project’s self-selected topic field on GitHub, generated from analysis of the metadata of over 3 million
repositories.[6] In addition, each language has its own niche in the open source ecosystem with very
little overlap. That means studies conducted on one language where most projects are focused on one
domain may not generalize to another language with a different market. For example, we can see
that Java has a heavy focus on Android and databases. Python is oriented towards machine learning.
Blockchains and cloud services are very popular in Go, and JavaScript is dominated by React and
Node.js.

Because previous works have only collected datasets for Java, study of other languages will require
collection of new datasets through software mining methods.

2.3.2 Lack of deep learning-based approaches

Past work in the study of code comments has most often used the technique of manual assessment
to evaluate quality.[30] While the fully manual approach has the advantages of clear interpretation
and high accuracy, this work requires considerable effort to produce results. This high workload has
contributed to a lack of existing tools that can aid developers in writing consistent comments and
code. In other fields related to natural language processing, deep learning based approaches have led
to results that surpass previous methods, such as in news categorization and sentiment analysis.[24]
Most recently, researchers have begun to apply language models to the task of comment consistency
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(a) Java (b) Python

(c) Go (d) JavaScript

Figure 2.4: Word clouds of topics by language

evaluation.[28][39] Compared to the extensive history of traditional methods to evaluate comments,
the use of deep learning techniques for this task has a large space left to explore. To address our
problem statement, we extend beyond previous approaches by incorporating the use of large language
models that have been specifically trained on code.

2.3.3 Practical Applications

The research survey conducted by Rani et al. also identified a deficiency in evaluative work as a gap
in the current field of study.[30] Past works which have proposed comment quality metrics have not
evaluated them in a representative setting, or have only evaluated them on available computer science
university students.[7] In this study, the main aim of studying RQ3 is to fill this gap in the current
literature in addition to addressing the real-world component of the problem statement. Our goals
are to answer how well current methods perform on representative examples and how practitioners
respond to proposed comment consistency contributions.

2.3.4 Developer Responses

Related to the previous point on practical applications, we find that previous works have not deeply
explored the responses of developers to comment consistency checking systems. Although we can
evaluate metrics such as accuracy and precision with examples from real-world projects, these figures
would not illuminate whether developers truly find the contributions useful. Therefore, we include
RQ4 to investigate reactions of developers to contributed fixes to comment consistency in a code review
setting.

2.4 Research Questions

The remainder of this thesis seeks to answer the following research questions. Each research question
is specifically targeted at an identified gap in previous work.

• RQ1. How can we apply large language models (LLMs) to classify comment consistency?
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• RQ2. How can we evaluate consistency on languages outside of Java?

• RQ3. How do we create a benchmark that matches real-world situations?

• RQ4. How do developers react to the results of this model?
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Chapter 3

Background

This chapter provides an in-depth look at background literature around the topics of code comment
analysis and applied language models. In doing so, we will also highlight gaps in existing work to
motivate the novel contributions of this project.

3.1 Comment Consistency Analysis

In this section we provide an overview of previous work on the study of code comment consistency.

3.1.1 Definitions of Code Comment Consistency

The unlimited flexibility of comments creates a massive surface area for the study of code comment
quality. Past work has focused on narrowing down the scope of the problem to specific programming
languages or types of comments. For example, while inline comments often describe something about
the behavior of code, they may also note behavior that has not been implemented yet. Some lan-
guages such as Java impose a structure to certain comment types, such as Javadoc-style method level
comments. Comment analysis could use knowledge of this structure to assess comment quality, for
example by checking that the @param variable name matches the value present in the code.

The field of evaluating comment quality is inherently subjective and many potential definitions of
consistency are available.[30] In addition to consistency, studies have focused on overlapping qualities
including relevance, accuracy, completeness and accuracy. The fuzziness of terminology and overlap
between studied aspects of code and comments has historically made it difficult to compare results from
different works in the field of code comment consistency.[30] For illustration, we share a selection of
examples of closely related quality definitions below, as noted by Zhi et al.[52] The purpose of this short
list is to indicate that the study of code comment consistency has not settled on a single definition for
what constitutes a good or bad comment. Instead, it is still highly subjective.

• Correctness: Whether the information in the comment is correct.[52]

• Accuracy: Accuracy or preciseness of the comment. For example, it should not be too abstract
or vague.[52]

• Relevance: How relevant the comment is to a given purpose.[30]

• Usefulness: The extent to which the comment can be used by its readers to achieve an objective.
[37]

In this project, we defined consistency in Definition 1 and Definition 2. This definition is shared by
several past works in the field and thus allows direct comparison of results, including Liu et al.[20] and
Panthaplackel et al[28]. The necessity of gathering large amounts of data to train large models means
that we cannot feasibly look at every single example of code and comment to decide whether they are
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consistent or not. Definition 2, along with selective preprocessing and careful consideration of which
open source project to include, provides a heuristic to determine whether a comment is consistent.

3.1.2 Measurements of Comment Quality

In the previous section we discussed background in the definitions of consistency. We shared examples
of how different past works have defined the quality rules they studied. In this section we sur-
vey measurements of comment quality. Note that the methods of measurement may not align exactly
with the definitions of quality. Normally, the definition of quality is a subjective statement (the com-
ment is useful), but the measurement is objective (the comment has 0 mispelled words and 1 formatting
mistake).

Heuristic-based approaches Rani et al. highlighted the importance of defining relevant metrics for
assessment.[30] Previous works have used a variety of objective metrics to measure subjective com-
ment quality. For example, to measure the quality of understandability, the Flesch-Kincaid readability
score has been used.[32] In another paper, Scalabrino et al. used word overlap proportion between
code and comment as a measure for the subjective quality of relevance.[33]

However these metrics may not generalise to practical usage as an indicator for quality.[30] A large
overlap between code and comment might imply the comment is redundant. The readability score,
which is determined from the lengths of words and sentences, may be meaningless in case the comment
contains code as well.

Deep Learning Approaches In the closest comparison to the work outlined in this thesis, Panthap-
lackel et al. applied deep learning models to this problem of comment consistency.[28] In deep learn-
ing, measured quality of a comment no longer corresponds to an easily explainable rule. The validity
of such a measurement depends on how well it performs and the applicability of the circumstances
under which the model was trained.

In their work, the problem of consistency of JavaDoc method level comments was studied by con-
structing a balanced dataset of 40,688 examples sampled from 1,518 open-source Java projects. The
authors built a set of transformer-based models that encoded the code text with either a sequential
text model or a graph neural network (GNN) that incorporated AST information. An overview of this
architecture is depicted in Figure 3.1.

Figure 3.1: Model architecture of Panthaplackel et al.[28]

The authors evaluated their methods in two circumstances, defined as post-hoc and just-in-time. In
the post-hoc setting, the model only receives the final comment and code pair and must determine
whether they are consistent. This setting matches the problem definition of our work. In the just-in-
time setting, the input to the model also includes the previous value of the comment and code. This
setting corresponds to the use case of detecting inconsistencies at commit time or while editing. On the
full test dataset, the best model (GNN-based) achieved an F1 score of 0.672 in the post-hoc setting and
0.809 in the just-in-time setting. However, these results include evaluation on the structured @param
and @return sections of the Javadoc format. As discussed in Chapter 2, our setting only studies the
unstructured portion of the comment which cannot be very easily analyzed with standard development
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tooling. Therefore, when considering only the summary line of the JavaDoc comment, the best model
had an F1 score of 0.706. The authors reported that this model took 30 minutes to train on an Nvidia
Titan GPU.

The next piece of related work we consider is an improvement of these results using BERT and
Longformer. Using the same dataset and evaluation metrics as Panthaplackel et al., Steiner et al.[39]
fine tuned the pre-trained base BERT model on this task. In the post-hoc setting, the authors achieved
a best F1 score of 0.72. Training this model took place in a distributed fashion across 8 Nvidia RTX
A5000 GPUs (24 GB each) for an unspecified amount of time.

In addition to building new models based on LLMs, our work replicates the models created by
Panthaplackel et al. and Steiner et al. for comparison on new datasets.

3.1.3 Comment Generation

Comment generation refers to automatically generating comments for existing code that would help
programmers understand, reuse, and maintain software. While our project does not specifically target
the outcome of generating comments, it is still relevant to understand recent background in this task.
That is because one could frame comment consistency as a problem of generation by stating a comment
is consistent if an automatically generated comment is similar enough to the original.

In a recent survey of comment generation technology, Song et al. [35] identified several approaches
which are similar to the methods seen for comment consistency detection. For example, code clone
techniques look for semantically similar code across a code base and use existing comments to fill gaps
in missing functions. Deep neural network approaches learn to generate comments by training on
datasets of code and comment pairs. This field faces similar challenges in the subjectivity of evalu-
ation criteria and difficulty of measuring practical impact.[35] While work on comment generation
continues, a recent survey by Stapleton et al. demonstrated that human written comments were more
helpful than machine generated comments at program comprehension tasks.[36]

In our project, we choose to focus on comment consistency detection rather than generation because
of the overarching goal as a tool to enhance code review, where code is already written and must be
checked for correctness. Another reason we include a short background on comment generation is
because the datasets used to study one problem can largely be used to study the other as well. In both
cases, datasets are composed of comment and code pairs. For example, the datasets created in this
work could also be used to train comment generation models for languages outside of Java.

3.2 Code Language Models

Because computer code is simply text, language models are an ideal candidate for performing tasks
based on source code. In this usage, a large language model (LLM) refers to a deep neural network
trained on a task involving natural language understanding and at least several hundred million pa-
rameters.

3.2.1 Language Models

In general, language models are statistical representations of language relationships. While numeri-
cal language models such as N-gram Markov chains have been used for many decades for text gen-
eration [21], recent computing advancements have fueled an incredible proliferation of large scale
transformers-based textual models trained on vast quantities of Internet-sourced datasets, such as
BERT[5] and the GPT family.[29]

Collectively, although the exact meaning of large is fuzzy, these new models are known as large
language models because they are composed of millions or billions of numerical parameters. These
models learn language relationships by turning words into numbers (a step known as encoding) and
optimizing their ability to predict tokens from a large corpus of text through gradient descent. Because
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text is also the representation of programming language source code, a natural consequence is to em-
ploy these models to program code. Approaches such as OpenAI Codex[3] now already see widespread
usage as the basis for the Copilot autocompletion tool.

3.2.2 Architecture Introduction

Two prominent examples of large language models which feature in this project are BERT and GPT.
Both are based on a transformer architecture and were trained to predict tokens in large corpora of
internet-sourced text (billions of words). One key advancement that enables the scale of these models is
that they are self-supervsed, meaning that a human does not need to label the correct prediction during
training. Instead, they are evaluated against predicting tokens that already exist in the dataset’s text
but are hidden from the model’s input.

Training Details This project applies one model based on BERT and one model based on CodeGen to
study the problem of comment consistency. While both models are based on transformers and model
input dependencies through the attention mechanism[43], BERT is an encoder and CodeGen (like
GPT) is a decoder. That means the output of BERT is one embedding vector per input token, thus input
and output have the same length. In contrast, the output of CodeGen is a single vector representing a
probability distribution for a prediction of the next word following the given input.

First, we will convey some of the relevant training and implementation details of BERT (which
CodeBERT is based on). The first input token to BERT is the special class token, [CLS], followed by
the input sequence tokenized with WordPiece and a vocabulary size of 30.000. This representation
is shown in Figure 3.2. The model is trained with the masked language modeling (MLM) task on a
dataset consisting of BookCorpus and English Wikipedia. In this task, 15% of input tokens are hidden
with a special [MASK] token, and the goal of the model is to predict the hidden tokens. Note that
during this stage a single projection layer which produces a vocabulary-sized probability distribution
is added to the model.

Figure 3.2: BERT input representation[9]

3.2.3 Code-Specific Training

While the datasets used to train these models did contain code samples, for specialised use in code-
related tasks additional training gives better performance. Thus, CodeBERT[9] and Codex[3] emerged
from BERT and GPT, respectively, by fine tuning on programming language datasets.

CodeBERT CodeBERT applies the same overall architecture as BERT base, with 110 million train-
able parameters. However, it uses a byte-pair encoding as its tokenizer instead of WordPiece. Most
relevantly to the work in this project, CodeBERT also uses a dataset sourced from publicly available
GitHub repositories in six programming languages: Java, Python, Go, JavaScript, PHP, and Ruby. Its
pre-training task is bimodal MLM, where a natural language and related code input are joined with a
special [SEP] token and fed together to the model. These inputs are sourced from functions and their
documentation comments. Indeed, the pre-training step in CodeBERT nearly identically resembles the
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input dataset of our project. Thus, we may expect that it can be very efficiently adapted to the task of
inconsistency detection.

CodeGen The second model we will investigate, CodeGen[26], is a publicly available cousin of
Codex, which is not accessible for fine tuning because of an exclusive agreement between OpenAI
and Microsoft. The CodeGen project publishes several model sizes, of which we will only plan to use
the smallest two for evaluation purposes (350 million and 2 billion parameters). The input to this
model is a byte-pair encoding tokenized string, and its output is a probability distribution over the
vocabulary for the next token. In the training stage, the objective of the model is to predict the next
token of each input sample. This multilingual model is sequentially trained over two datasets. First,
it is trained on ThePile, a 354 billion token dataset consisting of an agglomeration of many smaller
language datasets.[11] Then, it is trained on BigQuery, a dataset consisting of open source C, C++,
Java, JavaScript, Python, and Go code.

Note that the intersection of common languages between CodeGen and CodeBERT are exactly the
languages we propose to study in this project.

3.2.4 Fine Tuning

For applications other than token prediction, we apply fine-tuning with labeled datasets against the
pre-trained model. This process produces a model that performs a downstream task, such as question
answering, sentiment analysis, or, in the case of this project, code-comment consistency detection.
The intuition behind why this procedure can work is that through pre-training, the model has already
learned how to make appropriate connections (weights) between its inputs that gives it an understand-
ing of the vocabulary and grammar of the underlying language. Thus the model only needs a relatively
small amount of additional supervision to be applied in a related downstream setting. Evaluations of
these fine-tuned models in similar tasks to comment detection such as code search have shown similar
performance to specialized approaches designed specifically for that task.[9]

3.3 Software Data Collection

This section covers literature relevant to the topic of mining code from open source repositories.
Though not the main focus of this project, understanding past work on collecting software data for
research is a critical dependency due to the lack of existing data for comment consistency detection
across multiple languages.

3.3.1 GitHub Mining Practices

GitHub is the de-facto online repository for a vast amount of software source code, and it is free to
use for open-source projects. However, with this accessibility comes a set of challenges to the re-
searcher studying the practice of software engineering. In The promises and perils of mining GitHub,
Kalliamvakou et al. present a set of considerations for selecting which open source software projects
to study.[16]

Since the goal of this project is to produce a model that can apply to professional applications,
care must be taken to filter down the set of considered repositories. Simply picking the most-starred
projects may not lead to a representative dataset. For example, the most-starred project on GitHub,
freeCodeCamp/freeCodeCamp, is an online programming course. But this project’s seemingly over-
whelming popularity is manufactured by the curriculum itself, where one of the first tasks is to star
this repository on GitHub.

To perform the data collection component of this project, we also need to understand relevant
software engineering research techniques. In Promises and Perils of Mining GitHub, Kalliamvakou et
al.[16] map out many features to be aware of when mining data from GitHub. In the paper, the
authors explain that the nature of GitHub as a free platform for any open-source software leads to
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many repositories that are inactive, personal in nature, or not even containing software at all. Some
of the key findings are highlighted in Table 3.1.

Peril Category Percentage (%)
Inactive projects 46
Non-software development 36
Personal projects 72
Less than 25 total pull requests 95

Table 3.1: Key Findings from Kalliamvakou et al.[16] (2014)

3.3.2 Empirical Approaches to Code Evaluation

The goal of creating a benchmark set also deserves some attention in background research. In a large
empirical study of 500 commits, Wen et al. created a taxonomy of changes and identified which types
of commits were most likely to introduce code-comment inconsistencies.[44] Specifically, the authors
mined examples of potential issues by looking for commit messages containing the key words update
or outdate and comment. This method led to a false positive rate of 27.6% among the 500 manually
analyzed commits, where the pattern suggested a relevant comment but inspection revealed it was
unrelated.

Along with the Codex model, Chen et al. [3] introduced the HumanEval benchmark, a collection
of 164 original programming problems in the style of software developer interview questions. In this
benchmark, models are evaluated based on their abaility to produce code with the same output as the
human created solution when executed.

In addition to their CodeGen model, Nijkamp et al. built a benchmark known as the Multi-Turn Pro-
gramming Benchmark (MTPB).[26] This benchmark is similar to HumanEval in that it also evaluates
models by comparing the output of their generated code given a problem statement. However, these
problems are given in a turn-based fashion, where prompts are given for several steps of the overall
problem. This benchmark contains 115 problems. Figure 3.3 shows an example of one problem from
MTPB.

Figure 3.3: Example problem from MTPB[26]
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3.4 Evaluating Contributions in a Social Setting

One expected outcome of the research in this project is an understanding of how developers react to
contributions that fix comment inconsistencies. While this specific type of contribution has not been
studied in the past, we can look at other works that have submitted fixes to open source projects on
GitHub. In the context of our work, the purpose of reviewing previous research on pull request con-
tributions is to inform expectations about likely acceptance rates and to estimate an adequate sample
size.

Marcilio et al. developed a bug fixing tool based on warnings emitted by popular code static analysis
tools such as FindBugs and SonarQube. [22] The authors submitted 38 pull requests to open source
Java projects, including the Eclipse IDE and FindBugs tools, and found that 84% of suggested fixes
were accepted and merged. In a similar work, Rolim et al. mined project revision histories on GitHub
to create REVISAR, a tool that identifies frequently used edit patterns. The authors submitted 16
pull requests using the tool, of which 6 pull requests were accepted. Tan et al. piloted an innovative
approach by integrating the process of fixing open-source bugs into an academic curriculum. [15] By
sourcing contributions from a large class of 154 students, the authors achieved a greater scale of pull
requests than other works. The contributions were aimed at fixing existing open issues on the selected
open source projects. In total, the students submitted 214 pull requests, and 93 of them were merged.
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Chapter 4

Methodology

In this chapter, we look at each research question posed in Chapter 2 and build a plan to answer it.

4.1 RQ1: Model Training and Synthetic Evaluation

RQ1. How can we apply large language models (LLMs) to classify comment consistency?
Our approach to answering this question involves training the previously introduced large language

models on the existing dataset of Java examples shared by Panthaplackel et al.[28] We choose this
approach for two reasons. First, using the existing dataset offers a direct comparison against the
existing state of the art. Second, we argue that this approach is valid because this dataset is based on
mined open source projects, which are representative of the code that would be encountered in practice.
In fact, Fluri et al. found that 90% of changes to code correctly updated comments too, which suggests
that the examples in the dataset are most likely reliable based on the manner of collection.[10]

4.1.1 Comment Selection

Because comments do not follow the syntactic structure of computer code, their diversity is virtually
limitless. Therefore, attempting to create a model that understands every single written comment
would quickly become untenable. In this section we outline different types of comments to narrow
down the specific type we consider in this project. Listing 4.1 showcases each type of comment dis-
cussed in this section.

Inline and Function level comments In most programming languages, comments may either be
written anywhere within code or associated with entire functions or methods. We refer to the first
type as inline comments and the second as function comments. In Java, for example, this second type
includes Javadoc formatted comments. We make this distinction because inline comments introduce
the additional problem of determining the scope of a comment. Inline comments often provide brief
explanations of specific code fragments, but may not contain enough information to be useful for
evaluating consistency. Some inline comments may even be commented lines of code and not contain
natural language at all.

In this study, we focus on function level comments because they are always found in the same
position and are associated with the entire function, even across different projects and programming
languages. This restriction implies that our results are only valid for function level comments. Inline
comments, due to their even less constrained structure, may be more difficult to classify.

Previously, Liu et al. applied random forests with manually engineered features to classify changed
inline comments as either consistent or inconsistent.[20] These features included, for example, whether
the method declaration changed as well as the number of changed statements in the commit. However,
Chen et al. found that changing the inline comment scope resolution had a significant influence on
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the results.[2] Because we are also studying comment consistency across multiple languages, looking
at function comments gives us a similar setting for comparison.

Unstructured and Structured comments In this paragraph we make the distinction between struc-
tured and unstructured portions of function level comments. The structured portion of the comment
refers to usage of pre-determined documentation annotations such as @param in Java and :param in
Python. By unstructured, we discuss primarily the function comment summary which appears first.
This summary is normally a free-form description of the usage or purpose of the function in question
and does not need to follow a specific structure. This study is primarily concerned with unstruc-
tured comments because structured comments can often already be checked effectively by heuristic
approaches and integrated development environments. For example, tools such as Javadoc can verify
that the type, order and spelling of these structured sections matches between the function and its
comment.

def foo ( arg1 ) :
’ ’ ’ Unstructured summary comment tha t exp l a in s the usage of the func t ion ( the t a r g e t of

t h i s p r o j e c t ) .
3

: param arg1 : s t ru c tu r ed informat ion about arg1
: r e tu rns : s t ru c tu r ed re turn value exp lanat ion
’ ’ ’
bar = arg1 * arg1

8 # I n l i n e comment exp la in ing d e t a i l s of the code
# TODO: comment tha t d e s c r i b e s miss ing behavior
re turn arg1 + arg1 + bar

Listing 4.1: Comment types

Self-admitted technical debt (SATD) Self-admitted technical debt (commonly also known as TODO
comments) indicate tasks that are missing or incomplete, and may not provide actionable information
about the code itself.[50] In contrast with other types of comments that describe behavior existing in
the code, these comments will specifically describe what is not in the code. Therefore these comments
are excluded from the study, as their criteria for consistency is that they describe functionality that
does not exist, which is opposite from all other comments.

4.1.2 Dataset

The initial dataset contains a balanced sample of 40,688 examples of labeled code and comment pairs
extracted from 1,518 Java code projects on GitHub.[28] For our work, because of our focus on unstruc-
tured comments, we consider only the Summary class of the dataset, amounting to 10,498 examples.
We follow the original 80-10-10 split of the dataset to obtain train, validation, and test sets. These sets
are partitioned so that there is no overlap between projects; all examples from any given project will
only be in one of these sets.

Using the CodeBERT tokenizer, which is based on the byte-pair encoding tokenizer used in RoBERTa
[19], the median length of examples from the training set is 131, the validation set is 128, and the
test set is 123. Approximately 13% of all the examples have a length that exceeds the BERT maximum
token length of 512 (including the special [CLS] token). This tokenizer has a vocabulary size of 30,000
tokens.[5]

Under the Codegen tokenizer, which has a vocabulary size of 50,000 tokens[26], the median lengths
are respectively 98, 97, and 93. We can attribute the difference to the larger vocabulary size of the
Codegen tokenizer, which allows each token to consist of more characters, on average.

Classification Rules To classify examples for the dataset, the authors used projects’ commit histories.
Given a commit that modifies a particular method, if it changes both the code and its comment, then
the old comment is not consistent with the new code. If a commit modifies the code without modifying
the comment, then they label the old comment as being consistent with the new code.
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Figure 4.1: Example of a commit that modifies both the code and the comment

In Figure 4.1, we show an example of a commit that modifies both the code and the comment
for a function1. The modification adds the text in bytes to the comment and changes the returned
value from 5e5 to 1e6. Following our classification strategy, the comment before the commit would
be labeled as inconsistent with the new code.

One result of this labeling strategy was a significant imbalance in the obtained dataset. In practice,
it was significantly more common that code was modified without changing the comment than the
alternative. Thus, the authors obtained many more examples of the negative label than the positive.
To address this issue, Panthaplackel et al. downsampled the negative case to the number of positive
examples.

Post-hoc and Ad-hoc evaluation Panthaplackel et al. [28] introduced two classes of comment con-
sistency detection: post-hoc and ad-hoc (or just-in-time). In the post-hoc setting, the model only re-
ceives the final comment and code pair and must determine whether they are consistent. In the ad-hoc
setting, the input to the model also includes the previous value of the comment and code, which is
assumed consistent, and the model should predict whether the new pair is still consistent. This setting
corresponds to the use case of detecting inconsistencies at commit time or while editing. In our study,
we mainly consider the post-hoc setting because a model capable at this task would automatically
succeed in the ad-hoc setting as well simply by ignoring the code changeset and only looking at the
post-change code.

4.1.3 Model Selection

The field of large language models is advancing quickly, with new models and techniques progressing
the state of the art at an accelerating pace. [51] In this work, we focus on two pre-trained language
models that represent a broad spectrum of current research.

• CodeBERT applies additional code-specific training on top of the original BERT language model.
[9] This bidirectional encoder model has shown strong results on downstream tasks including
code classification, which are closely related to the goal of this project.

1source: https://github.com/nimiq/core-js/commit/b4d0fc32b4c6c1b5ca4c2c127f64eec669a116ad
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• CodeGen is an open source model built to offer an alternative to OpenAI’s closed source Codex
model.[26] This model, based on a transformer decoder architecture (like GPT), was trained on
several gigabytes of code and demonstrates strong capabilities in code generation tasks.

To apply large language models (LLMs) for comment consistency classification, we fine-tune the
CodeBERT and CodeGen models. Chapter 3 discussed details of these models including their training
parameters and previous results.

Specifically, for CodeBERT, we obtain a final classification by attaching a dense layer with two
outputs to the final output embedding of the unique [CLS] token which was prepended to the input.
This follows the approach the original authors used for their evaluation on downstream tasks.[9] This
model is illustrated in Figure 4.2.

Figure 4.2: CodeBERT model diagram

CodeGen, as a decoder model, contains a final output layer that produces a probability distribu-
tion over the entire token space. For our fine tuning approach, we replace this layer with a binary
output dense layer, corresponding to our two class label space. We include a diagram of this model in
Figure 4.3.

To test how model size scaling affects the results, we incorporate two versions of the CodeGen
model: 350 million and 2 billion parameters. We include this test because past works have shown
that model size is a significant factor in the performance of LLMs.[17] However, larger models usually
require more data to achieve the expected improvement in performance, a condition which this dataset
may not satisfy. Therefore, we test whether the larger model size is able to improve performance on
this dataset. If the larger model does not improve performance, then users of this dataset can lower
computational costs by training smaller models.

Training Details Replicated models, namely DeepJIT, BERT, and Longformer, were trained with iden-
tical hyperparameters to their original publications. Where possible, the same code was used via their
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Figure 4.3: CodeGen model diagram

published replication packages. In the case of DeepJIT, only the base model without the Java AST-based
graph neural network module was used. We chose this approach because this part of the network could
not be readily adapted to work with other languages.

The new CodeBERT and CodeGen models were each fine tuned on a single Nvidia V100 processor.
We used a learning rate of 10−5 for CodeBERT and 10−6 for CodeGen. Each model was trained for
20 epochs and the model with the highest F1 score on the validation set, evaluated at the end of each
epoch, was saved and tested.

4.1.4 Evaluation

We compare our models against the replicated past works of Panthaplackel et al.[28] (DeepJIT) and
Steiner et al.[39] (BERT and Longformer). In total we therefore perform 6 experiments: CodeBERT,
CodeGen 350M, CodeGen 2B, DeepJit (without AST), BERT, and Longformer.

Synthetic evaluations of past works have focused on the F1 score, defined in Equation 4.1.

F1 =
2 · Precision ·Recall
Precision+Recall

(4.1)

While this score does give a balanced insight into the performance of the model, we suggest that it
is not the most accurate reflection of the comment consistency detection setting.
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Due to the class imbalance inherent to this problem, we instead evaluate results using a weighted
F1 score, with class weights derived from the frequency of class labels found during dataset creation.
In practice this results in approximately a 19:1 ratio of class weight between the negative (consistent)
and positive (inconsistent) labels. In other words, this metric will more heavily penalize the model
for making a false positive misclassification, where it decides a consistent example is positive. One
advantage of this approach is that a basic classifier which returns “1” for every input would no longer
achieve near state of the art performance. In the balanced setting, such a classifier has perfect 1.0
recall and 0.5 precision, for an F1 score of 0.67, which offers strong competition against the current
state of the art score of 0.72. Using the weighted score, this baseline classifier’s score decreases to
0.1.

We demonstrate this effect in Table 4.1 and Table 4.2. Table 4.1 shows the calculation of F1 score
when the class sizes are balanced, which matches the results reported in prior work. Table 4.2 demon-
strates the issue that the same predictor achieves a much lower F1 result when the true class ratios are
applied to the calculation.

Predicted Positive Predicted Negative
Actual Positive 50 0
Actual Negative 50 0

Recall: 1.0 Precision: 0.5 F1: 0.67

Table 4.1: Balanced Confusion Matrix of 100 samples

Predicted Positive Predicted Negative
Actual Positive 5 0
Actual Negative 95 0

Recall: 1.0 Precision: 0.05 F1: 0.1

Table 4.2: Confusion Matrix with 100 samples, 20:1 negative:positive ratio

Another advantage of this metric is that it brings our evaluation into alignment with key findings
from industry-standard development tooling teams. Sadowski et al., in a study conducted at Google,
found that one of the criteria for a useful development tool is that it must produce less than 10% false
positives.[31] This false positive rate corresponds to a precision of 0.9. Notably, the recall score seems
to be less important for developers’ perception of the tool. This insight matches with the weighted F1
score which also strongly incentivizes models which can reach a high precision score.

Qualitative Analysis To gain insights into the LLMs’ decision-making process and better understand
the models’ behavior, we perform qualitative analysis using saliency maps on input tokens. Using the
open source visualization tool Ecco, we can analyze attribution scores for each input token based on
the output.[1] By leveraging the technique of backpropagation, we can highlight the tokens in the
input (comment and code) that contribute the most to the LLM’s classification decision.

Figure 4.4: Example of saliency map visualization from sentiment analysis [8]

In Figure 4.4, we show an example of a saliency map visualization from a sentiment analysis model.
This visualization highlights the phrase “worst movie ever produced”, which is the most important
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sequence of tokens in the input for the model’s classification decision as a negative sentiment.
While we are not able to analyze every weight at every layer of these models, these visualizations

can point towards the key patterns in the input that the model has learned. For example, in our data,
we may find the most weight placed on variable names in Java when the mistake in the comment
relates to a mismatch between a variable named in the comment and its usage in code.

The goal of these visualizations is to understand why the models made the predictions they did.
Because the Ecco visualization tool is suitable for decoder transformer models, as input we used the
Codegen 350M model trained on the original dataset. As a minor technical note, for compatibility with
the tool, we pretend that the model is a full-fledged decoder with a full output space of 51,200 tokens,
though in reality we only have nonzero probabilities for the first two token classes corresponding to
negative and positive.

4.2 RQ2: Multilingual Data Collection

RQ2. How can we evaluate consistency on languages outside of Java?
Our methodology for this research question involves collecting new datasets in Java, Python, Go,

and JavaScript and then evaluating our models for each.

4.2.1 Dataset Collection

Project Selection Naturally, the commenting practices of someone writing code for a small personal
project may differ greatly from those we would expect in an industry setting. Therefore, we must
be very selective about which repositories to include in our study. For our work, we considered the
following factors when creating our datasets. Our choices of thresholds are based on the advised peril
avoidance strategies of Kalliamvakou et al.[16] Where concrete threshold advice was not given, we
derived suitable values from analysis of a recent dataset of GitHub repository metadata.[6]

• Number of stars: the project should have at least 50 stars. As previously mentioned, star count
alone is not necessarily adequate for identifying engineered projects. However, it is still the
single strongest indicator, where stargazer count alone gives a 97% precision in identifying such
projects.[25]

• Number of authors: the project must have at least 10 different people who have committed
code, thus avoiding most personal projects. Kalliamvakou et al. noted that 95% of repositories
on GitHub had 3 or fewer committers. By looking for at least 10 committers to a project, we
limit the scope of our dataset to codebases that are more suited for contributions. Our implicit
assumption is that such projects have a stronger motivation to keep comment quality high, and
therefore they constitute ideal sources of data for our purpose. Out of all projects with at least
50 stars, 8.8% also had 10 committers.

• Recent activity of project: the latest commit should be within the last 4 years. For applicability
to current software development practices, we use this criterion to filter out possibly outdated
code patterns. Most projects that passed the previous filters would satisfy this criterion as well.
80.5% of all repositories with at least 50 stars had also been committed to since 2019.

• License type: we will only include permissively licensed projects (such as MIT license). This
restriction enables further research and sharing of code without undue restrictions.

• Pull request usage: we will only look at projects with at least 50 pull requests, an indicator that a
project seeks external involvement and thus an incentive to keep comment quality high. Among
projects with at least 50 stars, 19.1% also fulfilled this rule.
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Classification and Risk Mitigation We follow the definition of Panthaplackel et al. in how we label
comments as either consistent or inconsistent.[28] However, one risk of this type of automatic labeling
is that we might include false negatives in the dataset. In other words, the goal of the model is to
detect comments that are inconsistent, but there is nothing to explicitly prevent already-inconsistent
comments from being labeled as consistent in our dataset and thus contaminating the results. We take
two steps to mitigate this risk potential:

1. Our selection of projects as described in the previous section to include should filter out most
low quality code.

2. After creating the datasets, we randomly sample 100 negative examples for inspection. Although
we are not experts in every represented codebase, we can interpret obvious mislabelings, such
as a comment that was clearly copied from an incorrect place.

Language Specific Details To parse the required comments and code from each language we study,
we leveraged the parser generator tool tree-sitter to extract functions and their documentation
comments. In our problem setting, we parse out the documentation comment and define the summary
as the contents of the comment up to either the first period, the first empty line, or the first structured
directive (e.g. @param in Java). Following previous work, we also only include functions where at
least one return statement or the return type was changed between the old and new versions, since
the documentation summary often relates to the output of a function. Listing 4.2 shows an exam-
ple of a function with its documentation comment before the change and the Listing 4.3 shows the
same function after the change. This example would be included in the dataset because it satifies the
requirements that we have defined.

/**
* Returns the sum of the two input s .

* @param a the f i r s t input

* @param b the second input
5 * @return the sum of the two input s

*/
pub l i c i n t operate ( i n t a , i n t b) {

re turn a + b ;
}

Listing 4.2: Before change example

1 /**
* Returns the product of the two

input s .

* @param a the f i r s t input

* @param b the second input

* @return the product of the two
input s

6 */
pub l i c i n t operate ( i n t a , i n t b) {

re turn a * b ;
}

Listing 4.3: After change example

Listing 4.4 and Listing 4.5 show another pair of functions. However, this pair would not be in-
cluded in the dataset because only the the parameter documentation lines beginning with @param
have changed in the documentation comment. For our study of unstructured comments, we only con-
sider the summary of the comment, so this pair would not not satisfy the requirements.

1 /**
* Returns the sum of the two input s .

* @param a the f i r s t input

* @param b the second input

* @return the sum of the two input s
6 */

pub l i c i n t operate ( i n t a , i n t b) {
re turn a + b ;

}

Listing 4.4: Before change example

1 /**
* Returns the sum of the two input s .

* @param input1 the f i r s t input

* @param input2 the second input

* @return the sum of the two input s
6 */

pub l i c i n t operate ( i n t input1 , i n t
input2 ) {
re turn input1 + input2 ;

}

Listing 4.5: After change example

Filtering To improve the quality of our datasets and reduce noise that would affect our results, we
follow several steps in a pre-processing and filtering pipeline.
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• Deduplication: we remove all exact copies of the same comment and code after the first one. Ex-
amples of this issue could occur when blocks of code were copied and pasted between locations.
We also observed this rarely across different repositories when source code from a dependency
project was included within the dependent project and periodically updated.2

• Generated code: we define a source code file as possibly generated if the word generated
appears in the first 100 characters or in its file path. Our dataset removes all examples from these
files. Popular code generation tools such as controller-gen and grpcwill by convention leave
the text generated either in the file path or in the first lines of the generated file.

• Deprecations: we remove examples where the word deprecated appears, as this decision is
made outside of the code base and cannot normally be determined from the contents of the
function.

• Whitespace only changes: we remove any examples where the only difference between old and
new is whitespace. This happens frequently when projects change formatting tools or migrate
from tabs to spaces.

• SATD: as discussed in the problem formulation, we remove examples where the comment is
likely self-admitted technical debt (e.g. containing TODO or FIXME). We do this because the
consistency of SATD is expected to be opposite of other comments. The technical debt comment
is consistent if it is accurately describing something that does not exist in the code. Otherwise,
if the code implements the described debt, then the comment is inconsistent

We include several examples of these filtered cases in Appendix A.1. We created training, validation,
and testing sets following a split of 80, 10, and 10 percent.

4.2.2 Modelling Decision

In this study, we must decide between two approaches for model training on multiple languages. Ei-
ther we train each model on each language separately (for each type), or we train a single model on
examples from all languages. In our test, we compared a model trained on all languages to a model
trained on only Python, evaluated on the Python data test set and following the training details given
in section 4.1.3. The results of this test are shown in Table 4.3.

Precision Recall F1
CodeBERT (trained on Python) 0.62 0.49 0.55
CodeBERT (trained on 4 languages) 0.74 0.59 0.66

Table 4.3: CodeBERT trained on all 4 languages or only Python, evaluated on Python test set

While it might seem intuitive that a model trained on multiple languages will sacrifice performance
compared to a specialized model, we find in our preliminary experiments on Python that a model
trained on all examples achieves a better result. One possible explanation for this behavior is that
using a single model benefits from having a larger and more diverse dataset. By combining data from
multiple languages, we increase the overall volume of training examples, potentially leading to better
generalization and a more robust model. Therefore, all results in this work for RQ2 are produced by
models that have been trained on all 4 languages.

4.2.3 Evaluation

As discussed in subsection 4.1.4, we compare models based on weighted F1 scores, categorized per
language. After collecting the multilingual datasets in the manner discussed in this section, our first
experiment determines whether training new models is necessary by testing whether a model trained

2This is known as vendoring
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only on Java can generalize to other languages by showing equal performance on unseen languages.
If not, then we train all of the models on the new languages as well, and we will compare their results
on the multilingual test set after training. We will also perform qualitative analysis by investigating
specific examples and visualizing learned patterns through input saliency.

4.3 RQ3: Practical Benchmark Creation

RQ3. How do we create a benchmark that matches real world situations?
In this section, we describe our approach to manually curating examples for a benchmark set that

mimic real-world usage as closely as possible.

4.3.1 Pull Request Comment Mining

In correspondence with Wen et al.[44], who authored a large-scale empirical study of commit mes-
sages, we proposed a similar technique of looking for specific patterns within pull request comments
to construct a benchmark set. Our hypothesis was that we could find effective examples of real-world
situations by looking at instances where code reviewers specifically asked code authors to modify com-
ments to improve consistency with code.

They agreed with our intuition that if a maintainer writes a review comment on a pull request
asking the author to fix or update a comment, that gives us a strong signal that the referenced text is
a real world example of an inconsistent comment. These findings point toward the feasibility of this
method for constructing the benchmark set to answer RQ3. We discuss the results of this pull request
comment analysis in Chapter 5. We also highlight the challenges of this approach in Chapter 6.

Our method for finding these real-world representative situations was to mine a large number of
comments from the GitHub GraphQL API, apply some heuristic filtering, and then manually inspect
each example to see if it could enter the benchmark set. Our procedure was as follows.

• Mine several million pull request comments (details shared in Chapter 5).

• Filter for comments attached to lines of code with text containing a comment-relevant word (e.g.
comment, document, javadoc) and a relevant action verb (e.g. fix, update, outdated).

• Manually filter the resulting examples and include those that 1) were fixed, 2) were applied to a
function or method, 3) modifies the unstructured portion of the comment to match our problem
scope.

• To reduce bias in the benchmark set, we only allow one case from any given repository.

The goal of this approach was to find approximately 100 examples, 25 for each studied language.
Because each example contains a before and after with known labels, where the before is inconsistent
and the after is consistent, this process would give us 200 samples on which to benchmark our mod-
els. Due to the large amount of manual work involved in preparing these examples, finding yet more
samples was out of scope of this project. However, the value of 200 samples is in line with previous
benchmark sizes in the field. HumanEval, a popular code generation benchmark, contains 164 pro-
gramming problems.[3] MTPB, as discussed in the background research in Chapter 3, contains 115
separate examples.[26]

We found that for JavaScript (even after including TypeScript), looking for pull request comments
alone did not produce enough examples. In this case, we augmented the process by including commit
messages in the search. We followed the method of Wen et al.[44] by applying the same heuristic
of finding messages containing a comment-relevant word and an action verb. With this approach we
were able to reach the target number of examples for all languages.

Each example of an updated comment indicates an old version and a new version, where the old
version was corrected to the new version as a result of the review comment on a pull request. Thus, we
label the old version as positive (inconsistent) and the new version as negative (consistent) because
it passes an expert code review. In total, we found a balanced set of 100 examples of inconsistent
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comments, leading to 200 benchmark cases by splitting positive and negative labels, meaning a final
list of 50 per language.

Subjectivity Risk Mitigation We define subjectivity risk as the potential for bias in the benchmark
set as a result of one person performing all of the labeling. Although we have written specific criteria
for the method, there remains room for interpretation in deciding whether a specific comment indeed
asks for revision. To mitigate this revision, we defined a sample set of 16 Python cases from the
result of automatic heuristic filtering. We recruited 3 individuals along with the main author of this
project to label these examples, and we compared the resulting benchmark cases between them for
correspondence. If there was substantial disagreement, we would revise the procedure for finding and
determining the cases to reduce ambiguity.

4.4 RQ4: Real-world Performance

RQ4. How do developers react to the results of this model?
The goal of answering this research question is to discover how programmers respond to the usage

of this model in a social environment through GitHub pull requests. Under the taxonomy of Stol et
al.[41], this work would be classified as a solution-seeking study, with the aim of solving the practical
problem of inconsistent comments and measuring the impact of this solution. In this work, the actors
are software developers in the studied languages, the measured behavior is response to pull requests,
and the context is open source development on GitHub.

We choose to use GitHub as the setting for this study because of the popularity of the platform,
where we can reach maintainers of different organizations for all of the studied languages. To perform
this part of the study, we will execute our classification on selected open source projects. We select
open source projects that have a minimum number of 25 stars and at least three pull requests submitted
in the studied time period. The star count threshold is used to focus on engineered projects.[25] The
recent pull request submission rate is used to filter for active projects. This step increases the likelihood
that a maintainer will respond to our submission.

After the model identifies a potentially inconsistent comment, we manually review the issue. If we
agree, then we will do our best effort to write a fix by hand and submit it as a pull request. Our goal
is to have approximately 20 responses to our pull requests. Because of the high touch nature of this
work we cannot indefinitely submit requests. In other words, each pull request requires a significant
amount of manual work to write a relevant fix and submit it to a project on which we have no prior
context.

However, we believe that 20 responses suffices to draw conclusions from this project because this
process corresponds to the ideal use case of this model. This setting emulates the situation where a
programmer introduces an inconsistent comment and is immediately informed of the fact by a theo-
retical perfectly accurate model. This usage is the ideal situation for our model, and the results here
can answer the question of whether comment contributions are helpful or wanted because they are of
the highest possible quality. Finally, we support this choice by prior related work. In a related study
on comment consistency, Tan et al. sent pull requests to fix 16 identified inconsistencies, where 5 were
responded to by the developers.[42] Figure 4.5 shows an example of the pull request template we use.

In addition to the proposed fix, we also attach a survey in the original request form which has
received approval from the ethical review board3 at TU Eindhoven. This survey asks for reasoning
behind the accept or reject decision and includes questions to rank the relative significance of comment
consistency against other issues such as complex class hierarchies and meaningless variable names in
terms of developer frustration in code comprehension activities. The exact list of potential factors is
taken from the findings of a large scale field study by Xia et al., where the authors found that insufficient
comments were a significant source of frustration.[47] However, we expect a potentially low response
rate to this survey. In a recent work that directly emailed survey questions to software maintainers, Xia
et al. (distinct authors from the previous paper) sent 191 emails but only received a response rate of

3approval id: ERB2023MCS11
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Figure 4.5: Example pull request associated with RQ4

17.8%.[46]Our survey faces additional challenges. Not only is it not directly addressed at maintainers,
but the survey questions require a consent to a verbose ethical and legal statement.

4.5 Ethical Considerations

Existing language and code generative models face strong headwinds of ethical and legal concerns.
For example, they may produce code that looks like licensed work because of oversights in the training
data collection process. Professional developers may be concerned about the future of their job security
because they see generative models as direct competition. And these models may be employed by
malicious actors to build programs that exploit security vulnerabilities or target other people.

However, in this work, our discriminative models avoid most of these concerns. Our model’s only
output is a binary determination of consistency. There remains an ethical concern that developers
could rely too heavily on this model and allow their own attentiveness to lapse. The psychological
theory of risk compensation states that people adjust their behavior to maintain an expected level of
risk. If developers feel safely protected by this model, then they will proportionally decrease their own
effort and thus the final quality of comments in code could stay unchanged. The purpose of the social
study in RQ4 is to slightly mitigate this risk by studying how programmers would react to usage of this
model.

Another possible ethical impact of our work is the increased burden on software maintainers as a
result of reviewing our contributions for RQ4. To mitigate this effect, we only submit at most one pull
request per project. Overall, the ethical risk of this study is minimal because we do not study personal
information on a large scale, surveil people systematically, or make decisions that will affect people.
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Results

This chapter presents the main results of this project, grouped by each research question. It also
contains an analysis of the most important findings.

5.1 RQ1: Tests on Existing Java Dataset

As described in our section on methodology in Chapter 4, our approach to answering this question
involves training machine learning models on the previously published Java dataset of Panthaplackel
et al.[28]

Input Truncation Note that Longformer has an input maximum length of 2048 tokens. All other
models in the test used an input length of at most 512 tokens, with longer examples truncated at
that point. We estimated the effect of this truncation by calculating statistics over the lengths of the
training set. For instance, if the number of truncated examples would be very large, then we would
expect model performance to be negatively impacted. However, of the 8,398 training samples, only
585 had a combined token length (sum of code and comment lengths) greater than 512. The mean
length in the training set is 304 tokens, with a median of 130. Thus, most samples will not be affected
by limitation in the input length of the model. Figure 5.1 plots the length distribution of examples in
the training and validation sets.

(a) Training lengths (b) Validation lengths

Figure 5.1: Histograms of length distributions in training and validation sets of replication data

Metrics The performance metrics of each model on this dataset are shown in Table 5.1. The weighted
F1 score is calculated by applying a sample weight of 19 to all negative examples and a sample weight
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of 1 for all positive cases. These weights reflect the proportions of these classes’ occurrences in the
original, pre-downsampled, datasets, rounded to the nearest whole number.

Precision Recall Unweighted F1 Weighted F1
DeepJIT Base[28] 0.796 0.527 0.634 0.272
BERT[39] 0.582 0.629 0.605 0.133
Longformer[39] 0.866 0.835 0.850 0.409
CodeBERT 1.000 0.704 0.826 0.827
Codegen 350M 0.995 0.734 0.845 0.816
Codegen 2B 0.997 0.734 0.846 0.817

Table 5.1: RQ1 Test Performance Comparison

Figure 5.2: CodeBERT Training Loss and Validation F1, each epoch measured in 100 steps

5.1.1 Analysis

From Table 5.1, we see that the new models outperform previous models by weighted F1 score. In
particular, we can see that the precision of these models is almost perfect, perhaps too good to be true.
That does turn out to be the case. Overall, the best model in this test was fine-tuned CodeBERT. We
share the training loss, accuracy, and validation F1 scores during training for CodeBERT in Figure 5.2.
This graph shows that accuracy and F1 scores seem to reach a plateau very early on during training.

Our replicated models perform similarly to originally published results. Specifically, in this setting,
unweighted F1 scores were previously used. Panthaplackel et al. reported an F1 score of 0.706 for
their model. Steiner et al. reported F1 scores of 0.72 and 0.84 for their BERT and Longformer models,
respectively.

Visualizations of Model Performance To explain the results we have seen, we used the Ecco library
to visualize the input saliency of the models on selected input examples.[1]

Figure 5.3 illustrates the normalized contribution to the final classification by token for an example
from the replication dataset. Note that the greatest contribution by far comes from the final token, a
pair of newline characters following the method body, which accounted for 15.16% of the total. To
test whether the model was tuned to fixate on this feature, we removed the trailing new lines and
visualized the result in Figure 5.4. To our surprise, we saw the outcome class change from positive to
negative and a new gradient distribution.
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Figure 5.3: Example Gradient Norm Visualization, trailing newlines highlighted

Figure 5.4: Example Gradient Norm Visualization, trailing newlines removed

From this finding, we built a very simple trailing new line based classifier on the replication dataset.
This classifier simply returns the positive class if it sees two newline characters at the end of the input.
Otherwise, it returns the negative class. We express this classification rule in Equation 5.1.

prediction=

¨

inconsistent, if example has 2 trailing new line characters

consistent, otherwise
(5.1)

This simple model in fact achieves an identical result to our 100% precision trained CodeBERT
model on the replication data. Therefore this model also achieves leading accuracy and F1 on the
replication dataset because all positive examples in the dataset contained two trailing new line char-
acters, including the training, validation, and test sets. Additionally, approximately 70% of negative
(consistent) examples did not have two trailing newlines, which allows models to learn this difference
during training and use it during classification.

5.2 RQ2: Extension to Other Languages

The goal of RQ2 is to investigate how well the methods that seem to achieve strong results on the
original Java dataset will perform on other languages. To answer this question, we first collected new
datasets for the four studied languages Java, Python, Go, and JavaScript. Following the steps in our
methodology, we tested how well a Java-trained models would evaluate on the new languages, then
trained new models on the new languages for comparison.

5.2.1 Dataset Details

For each language, we mined examples from GitHub public repositories. The statistics on the number
of examples and repositories are given in Table 5.2. After this mining process, we balanced the overall
dataset by keeping 22000 examples for each languages, resampled to achieve an exactly even balance
between the positive and negative class. The projects mined were filtered from a total set of 3,152,515
projects using the criteria listed in Chapter 4.

Listing 5.1 gives an example of a positive case for the Python language. In this example, for the
given method, both the code body and the comment text were changed in a single commit, shown
in Listing 5.2. Therefore, we label the old comment as inconsistent with the new code. Here, from
inspection, we see that the inconsistency lies in the change from id to key for the database query.1

1https://github.com/medtagger/MedTagger/commit/9a6d61066a7dda328dd9552e1c05cab57cd42f0c
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Language Number of Projects Examples Positive Examples
Java 2257 259,215 15,066
Python 3940 279,440 16,737
Go 2982 573,044 29,779
JavaScript 13,981 296,092 11,059
Total 23,161 1,407,791 72,641

Table 5.2: Dataset Statistics

1 # Comment : Fetch a l l t a s k s from database
ordered by id .

def g e t _ a l l _ t a s k s () −> L i s t [Task ] :
with db_sess ion () as s e s s i o n :

t a s k s = s e s s i o n . query ( Task ) .
order_by ( Task . id ) . a l l ( )

re turn t a s k s

Listing 5.1: Python Example (Before)

# Comment : Fetch a l l t a s k s from database
ordered by key .

def g e t _ a l l _ t a s k s ( inc lude_d i sab l ed : bool
= Fa l se ) −> L i s t [Task ] :
query = Task . query
i f not inc lude_d i sab l ed :

5 query = query . f i l t e r (~Task .
d i sab led )

re turn query . order_by ( Task . key ) . a l l ( )

Listing 5.2: Python Example (After)

Table 5.3 and Figure 5.5 display statistics on the lengths of the examples in the training set by
language in terms of number of tokens after tokenization using the CodeBERT tokenizer.

Mean Median
Java 170 110
Python 292 201
Go 328 210
JavaScript 293 185

Table 5.3: Mean and Median Dataset Lengths (number of tokens under CodeBERT tokenization)

Java One-Liners Note that the lengths of examples in Java were apparently significantly lower than
the other languages. In fact, 7721 of the 17600 examples (44 percent) in the training set only had
one statement in the method body. One explanation for this result is that Java programs rely heavily
on redirection and method overloading, resulting in many methods which simply return the result of
calling another method. We give an example of a one-line method in Listing 5.3. This observation is
interesting because shorter methods give less context for the model to make a classification decision.
Thus, we may expect that the model will have more difficulty to classify Java examples than other
languages.

// Comment : C a l l s #crea teCon f i gS to re (
S e r v i c e S p e c i f i c a t i o n , C o l l e c t i o n )
with an empty l i s t of custom
d e s e r i a l i z a t i o n types .

pub l i c s t a t i c Conf igStore<
S e r v i c e S p e c i f i c a t i o n>
c rea teCon f i gS to re (

S e r v i c e S p e c i f i c a t i o n
s e r v i c e S p e c i f i c a t i o n ) throws
Conf igStoreExcept ion {

4 re turn c rea teCon f i gS to re (
s e r v i c e S p e c i f i c a t i o n , C o l l e c t i o n s
. emptyLis t ( ) ) ;

}

Listing 5.3: Java One-Line Example (Before)

// Comment : C a l l s #crea teCon f i gS to re (
ServiceSpec , C o l l e c t i o n ) with an
empty l i s t of custom d e s e r i a l i z a t i o n
types .

pub l i c s t a t i c Conf igStore<ServiceSpec>
c rea teCon f i gS to re (

Serv iceSpec se rv i ceSpec ) throws
Conf igStoreExcept ion {

re turn c rea teCon f i gS to re ( serv iceSpec ,
C o l l e c t i o n s . emptyLis t ( ) ) ;

5 }

Listing 5.4: Java One-Line Example (After)
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(a) Java lengths (b) Python lengths

(c) Go lengths (d) JavaScript lengths

Figure 5.5: Histograms of length distributions in training sets by language

Whitespace Investigation In the results of RQ1, we discovered that all inconsistent examples in the
original dataset had two trailing newlines. To test whether this was inherent to the data and therefore
an accurate predictor of the inconsistency of a comment, we investigated the distribution of trailing
newlines in the newly collected training set. In the newly mined GitHub dataset, we tested this by
also counting the number of trailing newlines after each example according to its label. Our results
are shown in Table 5.4. Here we see no significant correlation between the label and the number
of newlines following the method. In the negative case, approximately 10% of examples have one
newline. In the positive case, that ratio is approximately 8%.

Number of trailing newline characters 1 2 3+
Negative 19,653 213,401 10,585
Positive 991 13,581 456

Table 5.4: New Line Results in Java

Therefore, we can conclude that the wide gap in performance between the newly mined Java
dataset and the original Java dataset comes down to this artifact in the original data collection pro-
cess. It is unclear what caused this annotation artifact in the dataset. Our best guess is that it arose
from a bug in the data collection process, where the method body parser could have been changed be-
tween collecting the negative and positive examples, so that it included extra newlines in the positive
examples, but not in the negative examples.
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5.2.2 Necessity of newly trained models

A reasonable test to validate before training models on the large amounts of new data is to evaluate
the previously best-performing model on the test sets from the new datasets. If the performance is
similar across the new languages added, then we could conclude that our Java-trained model already
generalizes well across other unseen cases. For this test, we chose the best-performing CodeBERT
model from Table 5.1 and evaluated it on the new datasets presented in Table 5.2. The results of this
test are displayed in Table 5.5.

Precision Recall F1 Weighted F1
Java 0.80 0.16 0.28 0.17
Python 0.71 0.04 0.07 0.06
Go 0.79 0.01 0.03 0.03
JavaScript 0.86 0.02 0.03 0.03

Table 5.5: CodeBERT trained on replication data, tested on new data

Precision Recall F1 Weighted F1
Java 0.68 0.54 0.60 0.17
Python 0.59 0.44 0.51 0.12
Go 0.64 0.35 0.45 0.14
JavaScript 0.60 0.33 0.42 0.12

Table 5.6: CodeBERT trained on whitespace-normalized replication data, tested on new data

Due to the trailing whitespace annotation artifact in the original data, we also performed the test
by training on corrected data. We normalized the data by removing all trailing new lines from every
example, so it was no longer possible to determine a prediction only based on this aspect. We display
the results in Table 5.6.

Analysis The results shown in Table 5.5 clearly indicate that the model trained only on Java examples
does not generalize fully to other languages, with all other recall scores under 5 percent. Notably,
however, even the Java score fails to reproduce the findings from the replication dataset, with a far
lower recall score as well. In Table 5.6, we see a much more balanced result for the other languages.
However, the results for testing on Java language examples were still significantly better. Even with
the corrected artifact, the gap supports the idea that a model trained only on one language would not
carry its performance to other languages without any additional training.

5.2.3 Model Results

Now we train each model on the entire dataset. That means we feed all training examples from all
mined languages (Java, JavaScript, Python, Go) to each model per epoch, in shuffled order, using
the same hyperparameters as introduced in the training setup for RQ1 in section 4.1.3. To reflect a
reasonable balance in the trade-off between precision and recall, we present the weighted F1 score of
each model, as defined in subsection 4.1.4. These results are shown in Table 5.72.

5.2.4 Model Analysis

Overall Results The results do not point toward a single model as the consistent best performer on
the dataset in terms of weighted F1 score. The CodeBERT model, overall, does have the highest score.
The base model is pre-trained on a classification task that resembles this setting, as we discussed in
section 3.2.3 [9], which likely contributes to its best in class performance in the evaluation stage. Note

2DeepJIT model experienced mode collapse: it predicted 1 for all inputs.
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Java Python Go JavaScript Overall
DeepJIT[28] 0.095 0.095 0.095 0.095 0.095
BERT[39] 0.139 0.137 0.137 0.131 0.138
Longformer[39] 0.152 0.134 0.154 0.149 0.147
CodeBERT 0.242 0.152 0.203 0.177 0.197
Codegen 350M 0.189 0.149 0.217 0.197 0.189
Codegen 2B 0.195 0.157 0.201 0.187 0.179

Table 5.7: Weighted F1 Scores by Model and Programming Language

that during the evaluation of this research question, the test set on which our results are based was
automatically collected in the same manner as the training set. While our methodology dictated that
the set of repositories from which examples were mined among training, validation, and test were
disjoint, the format and collection method of the examples was identical.

Training Progress We display a chart of loss and accuracy from training of the CodeBERT model
in Figure 5.6. In this chart, we can observe the training set accuracy continues to increase and loss
decreases throughout training. However, Figure 5.6 also shows a chart of F1 score on the validation
set, evaluated at the end of each training epoch. By comparing these charts, we see that the validation
set performance stops increasing relatively soon. This gap in performance between the training and
validation sets suggests an issue of overfitting.

Figure 5.6: CodeBERT Training Loss and Validation F1

Model Size Another piece of evidence for this overfitting hypothesis comes from the relative per-
formance of the new models. We note that the larger models did not necessarily outperform smaller
models, despite having many more parameters available. This result suggests that the models have
overfit on the training set and can no longer improve overall performance after a certain point, so the
extra complexity inherent to the larger models does not produce a benefit in this specific scenario.
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5.3 RQ3: Benchmark Evaluation

5.3.1 Overview

The goal of this research question is to evaluate the performance of the trained models on examples
extracted from real-world occurrences of code and comment inconsistency. We first created a dataset
of manually curated examples, discovered from pull request comments mined with the GitHub API.

5.3.2 Pull Request Comment Details

We list the total number of mined projects, the number of mined comments, and the number of com-
ments after filtering per language in Table 5.8. To filter the list of comments, we applied the following
rules.

• Presence of a word related to documentation, such as JavaDoc, docstring or godoc

• Presence of a verb related to an update request, such as fix, update, or outdate

• Existence of a comment block delimiter in the code lines preceding the line referenced by the
comment: triple quotes in Python, // in Go, and /** in Java (for JavaScript we looked for either
// or /**)

Projects Total Comments Filtered Comments
Java 7,094 2,712,741 6,070
Python 15,212 4,418,482 7,600
Go 7,154 3,141,655 8,918
JavaScript 15,608 2,895,875 5,355
Overall 45,068 13,168,753 27,943

Table 5.8: Benchmark Statistics

Despite the aggressive filtering applied to the mined pull request comment data, with only 0.2% of
comments passing the filter, we still had a tremendous quantity of examples to manually look through.

In practice, the filtered comments were reduced during the benchmark creation by the additional
restriction that we only kept one example for each project. Therefore, when we confirmed one example
for the benchmark set, we removed all other examples from the filtered candidates list. Because of this,
approximately 800 comment candidates were evaluated for each language.

For each found example, we extracted the review comment that led to the determination and the
code blocks before and after a change was made in response. We give an example of one case from
the Go language benchmark set in Listing 5.5.

URL : h t tp s :// gi thub . com/ c i l ium / c i l ium / p u l l /2684#discussion_r165204442

Review : Update the documentation f o r t h i s func t ion to r e f l e c t the add i t i on of ‘ p o l i c y .
GetPol icyEnabled () ’ having i t s r e s u l t checked .

5 Old Version :
// Ing re s sOrEgre s s I sEn fo r ced re tu rns t rue i f e i t h e r i n g r e s s or egre s s i s in
// enforcement mode
func ( e *Endpoint ) Ingre s sOrEgre s s I sEn fo rced () bool {

re turn p o l i c y . GetPol icyEnabled () == AlwaysEnforce ||
10 e . Opts . I sEnabled ( Opt ion Ing re s sPo l i c y ) ||

e . Opts . I sEnabled ( Opt ionEgres sPo l i cy )
}
New Version :
// Ing re s sOrEgre s s I sEn fo r ced re tu rns t rue i f e i t h e r i n g r e s s or egre s s i s in

15 // enforcement mode or i f the g loba l p o l i c y enforcement i s enabled .
func ( e *Endpoint ) Ingre s sOrEgre s s I sEn fo rced () bool {
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re turn p o l i c y . GetPol icyEnabled () == AlwaysEnforce ||
e . Opts . I sEnabled ( Opt i on Ing re s sPo l i c y ) ||
e . Opts . I sEnabled ( Opt ionEgres sPo l i cy )

20 }

Listing 5.5: Example from Go benchmark

Subjectivity Verification We mitigated the risk of subjectivity bias by distributing a random set of
16 filtered Python candidate examples to 4 reviewers. Each reviewer was given the set of examples
and a list of instructions on the steps to take to verify the examples. The instructions correspond to a
check of each of the criteria listed in 4.3.1. After completion of the labeling process, the results were
compared in a discussion.

In this discussion, we reviewed the cases where annotators disagreed on the classification of an
example. At this point, from these 16 filtered candidate examples, each reviewer had found between 3
and 6 examples of code and comment inconsistency. During the review, we found that each annotator
had made small mistakes in the interpretation of the criteria. For instance, two examples contained
comments that were changed, but the change only affected a parameter name, not the summary line.
Therefore, the comment should not be included in the benchmark under the criteria set out. However,
we found that after discussion, all labelers agreed on the classifications of the examples given in the
set. In the reviewed list, the 3 examples that satisfied all requirements were kept as inconsistent and
used in the final benchmark set for Python.

5.3.3 Results

After creating the benchmark sets containing 25 real-world examples for each language, we evaluated
the models on these examples in the benchmark sets. The results, again using weighted F1 score, are
presented in Table 5.9. We omit the replicated DeepJIT model from this comparison because of the
mode collapse observed in training.

Java Python Go JavaScript Test Set Overall
BERT 0.135 0.097 0.085 0.098 0.138
Longformer 0.156 0.066 0.085 0.078 0.147
CodeBERT 0.103 0.096 0.161 0.122 0.197
Codegen 350M 0.083 0.090 0.078 0.095 0.189
Codegen 2B 0.056 0.110 0.069 0.094 0.179

Table 5.9: Benchmark Set Weighted F1 Scores, compared with test set overall score (from Table 5.7)

Table 5.9 shows a significant decrease in performance from the automatically mined test set to the
manually curated benchmark examples.

5.4 RQ4: Social Study Results

Regardless of how well any model performs, the overall goal of a developer tool is to be used. Thus, the
objective of this research question was to determine whether the task at hand is useful to real-world
developers.

To answer this question, we executed the trained CodeBERT model against popular and active open
source projects on GitHub with at least 50 stars and 3 pull requests in the time period of May 15 to
May 30, 2023. We manually inspected the model’s outputs and identified true positives. We then
wrote handcrafted fixes for these true positives and submitted pull requests on GitHub to the project
maintainers. In these pull requests, we also included a link to an optional survey which asked for
opinions on the usefulness of the tool and the relative frustration of various developmental difficulties.

In total, we submitted 20 pull requests, with outcomes listed in Table 5.10. The full list of pull
requests can be found at Appendix A.2.
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Count
Accepted 17
Accepted with Revision 1
Rejected 0
No Response 2

Table 5.10: Pull Request Outcomes

However, we received no responses on the attached survey. In chapter 6, we discuss the implications
of our results in the context of open source software research, and in chapter 7 we offer directions
for future work that could give more insight from survey questions related to software development
through pull requests on GitHub.

5.4.1 Pull Request Analysis

Figure 5.7: Example Comment Fix Pull Request

Figure 5.7 shows an example of an accepted fix to a Python project. Because we are not experts
in all of the potential projects on GitHub, we can only confidently write fixes for obvious mistakes.
Therefore, even when the model identifies a comment as inconsistent, we usually are not equipped
to determine whether that is a true or false positive. Despite this potential limitation, the results in
this section suggest that addressing inconsistent comments is a valued contribution to software. From
the 90% of accepted fixes and zero outright rejections, we can conclude that these fixes are useful.
Unfortunately, without qualitative results on our survey, it is difficult to gauge exactly to what degree
the usefulness applies.
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Discussion

This chapter is devoted to interpretation of the results presented in Chapter 5. The goal is to dive into
reasons for the results and explore some of the implications of our findings.

6.1 Newly Collected (RQ2) Dataset Details

6.1.1 Dataset Validation

A specific risk of automated dataset collection based on commit history is that we could introduce false
negatives to the labeled set. In other words, we may heuristically determine an example as negative,
meaning the code and comment are consistent, but actually it should have been labeled inconsistent, or
positive. This can happen because this determination is expressly the purpose of building the models,
and before we have trained a model the only way to definitively label an example is through asking an
expert.

To mitigate this risk, we checked a random sample of 50 examples from each language in the
dataset. These examples were manually inspected to validate the correctness of their labeling. The
validation process involved reviewing the comments and their corresponding code to determine if the
labeling heuristic accurately captured the comment’s consistency. Listing 6.1 and Listing 6.21 give an
example where the source code of a method has changed, but the comment has not. Therefore our
heuristic labels the comment as consistent with the new code, and, after manual review, we decided
this was an accurate label. This example was one of the 50 from Java we spot checked for correctness.

// Return t rue i f an element made up of
by teab le s might have been put in t h i s

f i l t e r or f a l s e i f t h i s i s
d e f i n i t e l y not the case .

pub l i c boolean mightContain ( Byteable . . .
by t eab le s ) {
masterLock . readLock () . lock () ;
t r y {

5 re turn source . mightContain (Token .
c r ea t e ( by teab le s ) ) ;

}
f i n a l l y {

masterLock . readLock () . unlock () ;
}

10 }

Listing 6.1: Java Consistent Comment
Example (Before)

// Return t rue i f an element made up of
by teab le s might have been put in t h i s

f i l t e r or f a l s e i f t h i s i s
d e f i n i t e l y not the case .

pub l i c boolean mightContain ( Byteable . . .
by t eab le s ) {
masterLock . readLock () . lock () ;
t r y {

5 re turn source . mightContain (
Composite . c r ea t e ( by teab l e s ) ) ;

}
f i n a l l y {

masterLock . readLock () . unlock () ;
}

10 }

Listing 6.2: Java Consistent Comment
Example (After)

1From https://github.com/cinchapi/concourse/commit/b0eb970b7902423283abccbe27dfeed394cd05e2
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One caveat of this process is that we were not experts in all of the 23.000 projects represented, and
therefore could only validate obvious mistakes. However, in this process we found no clear indications
of mislabeled examples, meaning that all 200 negative examples we checked did seem to be consistent
in practice. Therefore we are confident that our mining process produced a comprehensive dataset
that mitigated this type of error.

6.2 Model Discussion

6.2.1 Replication

The previous findings of Panthaplackel et al.[28] and Steiner et al.[39] were replicated in our project.
Thanks to the provided replication packages, we were not only able to reproduce the previous results,
but we were also able to apply the previous models to our new dataset. However, we also found that
the high performance of the previous models relied upon a data collection artifact that added spurious
new lines to all positive examples, as shown in Figure 5.3. Because this artifact was not present in our
dataset, we were unable to replicate the high performance of the previous models when we applied
them to the new languages. Therefore, it appears that the previously reported high performance
was predominantly due to these artifacts, casting doubts on the true generalizability and efficacy of
the earlier models.

This result highlights the importance of trying to understand and interpret the results of a deep
learning model, which may have picked up on unexpected artifacts in the data. For example, Lehman
et al. found that a mushroom edibility classification model learned that positive and negative examples
were presented in alternating order, and therefore learned to classify mushrooms based on their posi-
tion in the dataset[18] rather than on their actual appearance. The tremendous capability of large
models combined with their inscrutable complexity means that they often operate as black boxes, pro-
ducing results without a clear, interpretable rationale. This combination lets them very quickly learn
to make predictions based on any discernible patterns, including those that might be completely unre-
lated to the true underlying relationships in the data. It underscores the vulnerability of such models to
what is often termed shortcut learning, where the model identifies and leverages shortcuts in the data
to achieve high performance on the training set, but often at the expense of true generalizability.[12] As
researchers, we have to exercise extra caution with collecting data in a way that prevents inadvertent
patterns or artifacts from being introduced.

6.2.2 Explanations of Low Performance

Overall, even the highest overall weighted F1 score of 0.242 of CodeBERT on Java leaves significant
room for improvement. In the setting of code comment consistency analysis, it is reasonable to discuss
whether better performance is possible given the current methods. During the dataset validation phase
section 6.1, we confirmed that we did not include false negatives in the dataset. However, we did take
note of other potential issues in the dataset.

Missing Context For example, we noted that 44% of the Java methods we mined contained only one
statement, calling out to another method. Without including the content of the referenced method in
the context given to the model, in some of these cases it is difficult to imagine how the model could
make the correct classification. Languages other than Java exhibit cases with this potential problem as
well. Listing 6.3 gives an example from the newly mined training dataset of a Python comment we label
as inconsistent because both the comment and code were changed in a single commit. In Listing 6.4,
the example is shown after the change, where the change pertains entirely to context outside of the
function body. In such a case, the model has no way of knowing why the comment is inconsistent
with the code unless it has already encountered the entire sample during pre-training. However, we
note that this issue appeared to be infrequent. After analyzing a random sample of 50 examples from
the Python training set, we only found this one case where the outcome of classification was likely
ambiguous given only the provided context.
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# Comment : This must be a c l a s s method so
a model may have p r o p e r t i e s tha t are
of type s e l f , this ensures that we

don’t create a cyclic import
def openapi_types () :

re turn {
’ va lue ’ : ( [ f l o a t ] , ) , # noqa:

E501
5 }

Listing 6.3: Python Example (Before)

# Comment : This must be a method because
a model may have p r o p e r t i e s tha t are
of type s e l f , this must run after the
class is loaded

def openapi_types () :
re turn {

’ va lue ’ : ( [ f l o a t ] , ) ,
5 }

Listing 6.4: Python Example (After)

Inconsistent Standards We also encounter the fundamental issue of subjectivity of consistency clas-
sification in the dataset. Because we allow consistency to be implicitly defined by the patterns of
contributions over thousands of projects, we will naturally encounter conflicts in the data. What one
reviewer of pull requests would consider consistent might not pass the review process for another
individual. Listing 6.5 gives an example from the training set of the Go language where the inconsis-
tent labeled comment is most likely arguably consistent. The motivation for collecting a large dataset
for this task is that over a large number of individuals, these clashes will resolve themselves into a
working model of consistency that can be applied to as many instances as possible. However, if these
conflicts occur too frequently, the performance of the model will be limited as its updates are pulled in
conflicting directions.

// Comment : GetIdOk re tu rns a tup le with
the Id f i e l d value i f set , n i l
o therwise and a boolean to check i f
the value has been s e t .

func (o *V e r i f i c a t i o n F l o w ) GetIdOk () (*
s t r i n g , bool ) {

i f o == n i l || o . Id == n i l {
re turn n i l , f a l s e

5 }
re turn o . Id , t rue

}

Listing 6.5: Go Example (Before)

// Comment : GetIdOk re tu rns a tup le with
the Id f i e l d value and a boolean to
check i f the value has been s e t .

2 func (o *V e r i f i c a t i o n F l o w ) GetIdOk () (*
s t r i ng , bool ) {

i f o == n i l {
re turn n i l , f a l s e

}
re turn &o . Id , t rue

7 }

Listing 6.6: Go Example (After)

6.2.3 Negative Results in Context

Overall, the results of all tested models presented in Table 5.7 performed worse than initially expected.
In Figure 5.3 and Figure 5.4, we demonstrated how a labeling artifact of trailing newlines allowed
models to circumvent the test objective and achieve very good performance. Building upon this initial
impression, we found out that in this setting the true results of the tested models was much worse in
comparison. However, we believe that this result is still a valuable contribution to the field. Menzies
et al. and González-Barahona et al. have written about a lack of reproduction studies in software
engineering research, citing conclusion instability and difficulty in collecting new data following the
original methodology.[23][13] In other words, the conclusions of one study might apply only to a
narrow subset of the problem domain, and when tested in other ways no longer reproduces. Our work
highlights that rigorous testing is needed in research by comparing both old and new datasets, and we
support the application of understandability techniques to diagnose how deep learning models make
their predictions.

The results we present in this thesis, while negative, are only an initial step towards further progress
in the study of this problem. Because we committed resources to expanding the scope of the study to
additional languages, we devoted less time to engineering model architectures and training methods to
improve performance. Therefore, we hope that this work provides a motivation for future researchers
to continue development in the setting of source code comment consistency prediction.
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6.3 Benchmark Findings

We presented the results of our benchmark set in section 5.3. In this discussion we discuss implica-
tions of the different results between the benchmark set and mined dataset. We also share some of
the challenges in creating this benchmark set which could be valuable to future researchers studying
GitHub pull requests.

6.3.1 Validity of Results

Table 5.9 showed a significant decrease in performance from the automatically mined test set to the
manually curated benchmark examples. One explanation of this result is that the construction of the
benchmark set makes the differentiation between inconsistent and consistent examples more challeng-
ing. Because examples in the mined dataset are entire commits, in most cases the functionality in the
code actually changes as well as the contents of the comment. However, in this pull request comment
benchmark, almost all examples have code which does not change between the negative and positive
label. Instead, only the comment is changed. Therefore, this test evaluates the model’s ability to make
a distinction between very similar inputs, which does not perfectly align with the training situation,
where this was not presented.

6.3.2 Generality

In this section we briefly discuss whether the results on the benchmark set cast doubt on the modelling
methodology. It is natural to expect the overall benchmark results to be lower than the training evalu-
ation. After all, the pull request has already passed the author’s own self-review, and comments made
to it are an additional round of review.

This aspect is one place where the difference between industry and open source likely plays a part.
If code is committed without peer review, then the training dataset, mined from commits, would only
include changes that the original code author could notice in the first place. Although the filtering on
projects included in the dataset precludes most low-quality code, the standard for strictness in code
review in open source is likely lower overall than in large companies, where every commit must pass
at least one expert peer review. Therefore, if we could guarantee that all commits included in the
training set were reviewed by a human, as they are in industry, then the training and benchmarking
objectives would align more closely. However, in open source data, without this guarantee, we could
expect to see the results we observed, where the difficulty of the benchmark exceeded that of most of
the training data. In Listing 6.7, we include an example of a difficult case from the benchmark set,
where the code is the same between the old and new versions and most of the comment is shared as
well.
/**

2 * Sets whether or not to d i sconnec t the
c l i e n t on de te c t i ng a channel e r ro r .
By de fau l t , i t i s enabled and

* c l i e n t d i s connec t s immediately . I f i t
i s d i sab led the c l i e n t t r i e s to
reconnect according to {@link #
maxReconnections ( i n t ) } .

*/
pub l i c EventS toreBu i lder

disconnectOnTcpChannelError ( boolean
disconnectOnTcpChannelError ) {
s e t t i n g s B u i l d e r .

disconnectOnTcpChannelError (
disconnectOnTcpChannelError ) ;

7 re turn t h i s ;
}

Listing 6.7: Java Benchmark Example
(Before)

1 /**
* Sets whether or not to d i sconnec t the

c l i e n t on de te c t i ng a channel e r ro r .
By de fau l t , i t i s disabled and the

c l i e n t

* t r i e s to reconnect according to {@link
#maxReconnections ( i n t ) } . I f i t i s

enabled the c l i e n t d i s connec t s
immediately .

*/
pub l i c EventS toreBu i lder

disconnectOnTcpChannelError ( boolean
disconnectOnTcpChannelError ) {

6 s e t t i n g s B u i l d e r .
disconnectOnTcpChannelError (
disconnectOnTcpChannelError ) ;

re turn t h i s ;
}

Listing 6.8: Java Benchmark Example (After)
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6.3.3 Challenges

In this section we list some of the challenges we encountered in creating the benchmark set. We share
these challenges because they could be relevant to future work that involves study of pull requests.
To our knowledge, our dataset of over 13 million pull request comments, which we used to build our
benchmark set, is one of the largest of its kind, and we hope that it can be used for future research.

• “Comment” overload: Clearly, there is a name clash between the topic of our study and the context
within a GitHub pull request. Reviewers make “comments” on the content of a pull request, and
we are specifically interested in “comments” about “comments”. For example, when we filter for
review text containing “this comment”, most of the matches we found were referring to other
review comments, not code comments.

• Ignored change requests: A surprisingly large number of instances where reviewers requested a
change to a comment were simply ignored, meaning that the original code was merged, without
fixing a mistake in a comment2. We might surmise that this behavior comes from a lower standard
of review in the open source world than in industry.

• Squashed commits: A common practice in managing multiple branches of a distributed version
control system is to squash multiple commits into a single commit upon merge into the main
branch. This step ensures that the history of the main branch is linear and easier to work with.
However, this squash step removes all of the intermediate commits of the original pull request.
In our study, we are specifically interested in these commits, where an author responds to a code
review by committing a change to their original submission. We found that most examples of
updated code were lost in this squash operation.3

The combination of these challenges greatly increased the difficulty and time required to create the
benchmark sets for each language.

6.4 RQ4: Social Study

While we found that almost all of our proposed fixes were accepted (18 out of 20), we received no
responses on our survey. The pull request results are listed in Table 5.10. Given that the changes were
generally accepted, we can conclude that these changes were indeed useful to the maintainers. Even
though the sample size of 20 is not extremely comprehensive, the overwhelming majority of requests
being accepted means that the conclusion is not in doubt. However, without more qualitative reports
from the survey, it is difficult to place these findings in the broader context of software engineering
development tooling research. We can point to several factors that likely influenced the response rate
on our survey questions.

• Survey Targeting: Because the survey link was given generically in the body of the pull request
description, our reviewers may have overlooked it or regarded it as non-essential. Past work in
developer surveys has indicated a better response rate from surveys which are personalized and
sent to individual contributors.[45][34]

• Introduction Hurdle: If a reviewer did click our survey form, they would have been greeted with
a 9 paragraph privacy agreement they must consent to. For an unfamiliar and busy open source
software maintainer, that might have seemed overwhelming, and they may have responded by
leaving our survey.

• Nature of Pull Requests: The pull requests sent as part of this research were relatively simple, as
shown in the example of Figure 5.7. Therefore, reviewers may have felt that they had no addi-
tional insight to give because the acceptance of the pull request was evidently self-explanatory.

2For example, https://github.com/openshift/openshift-azure/pull/238#discussion_r212902362
3For example, https://github.com/proteneer/timemachine/pull/640#discussion_r808454189
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Overall, we argue that our results from the acceptance rates of pull requests are still valid, despite
the lack of survey responses. From the 20 pull requests submitted, 18 were accepted, a rate of 90%.
Given the sample size of 20, with a 95% confidence interval, the true acceptance rate is between 76%
and 100%. In active open source projects, a high volume of issues and pull requests can overwhelm
maintainers, so they prioritize pull requests that provide clear benefits without a heavy burden. The
fact that 18 out of 20 requests were accepted implies that fixing the issue of comment consistency has
a positive value. Due to this high acceptance rate, we can conclude that pull requests that fix comment
code correspondences are useful to project maintainers.
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Chapter 7

Conclusions

In this chapter, we summarize our major findings and reflect on the overall impact of this project.
In this thesis, we have explored the intersection between code-focused large language models and

the study of code and comment consistency. The study of code comment consistency involves the
classification of comments as either consistent or inconsistent with the code they are attached to. In
this work, we focused on method or function level comments, which are linked to a specific method
or function in the code. We addressed a major gap in previous work[30] by evaluating the established
approach on languages other than Java. This work involved a large scale software mining operation
on GitHub to build a balanced dataset with more than 80,000 examples. We also increased the scope
of our study by including real-world evaluation with a manually curated benchmark set and validating
the approach on current day open source projects through a search of more than 13 million pull request
comments on GitHub.

In summary, we found that CodeBERT outperformed previous models in evaluation on both pre-
vious datasets and our new dataset. This result supports the theory that pretrained large language
models can reduce the need for language-specific feature engineering. Furthermore, we identified a
significant anomaly in an existing Java dataset that may have affected previously published results.
This anomaly involved a whitespace artifact that models could use to distinguish positive and negative
cases which was not present in the source data. All positive cases in the existing dataset ended with an
extra pair of newline characters, which allowed a trivial classifier to achieve 100% precision and high
recall. We also tested that our new dataset was not vulnerable to this issue, and therefore the resulting
evaluation scores of all models were lower than previously observed.

In the real-world benchmark evaluation phase, we observed a gap between model evaluation per-
formance and benchmark results. We hypothesize that this gap is due to the difficulty of the benchmark
task, which requires the model to make a more fine-grained distinction between classes than it typ-
ically encountered in the training task. This work highlighted the challenge of real-world situations
and the danger of assuming that model performance on a training task would necessarily translate to
equivalent performance in operation.

Finally, we found that 18 out of 20 open source maintainers accepted our handwritten contribu-
tions that addressed comment issues. This finding gives additional evidence that the field of comment
consistency classification is valuable and worth pursuing in tooling development.

We hope that these new results and the expanded datasets we publish alongside this thesis will
catalyze further growth across this field. For example, our datasets of labeled code and comment pairs
could help train comment generation models. Our dataset of over 13 million pull request comments
can help researchers build pull request review bots, or aid with linguistic analysis in an open source
software engineering setting.

7.1 Future Work

In this section we share the most impactful next steps for research in this field, in our estimation.
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• Comment Generation: Although we excluded this direction of study because we identified code
comprehension as the bottleneck of software development, this topic is very active. We believe
that future work could build a comment generation solution by using the datasets we have col-
lected, which have mined a large amount of open source data, in a format of comment code
pairs, suitable for the training setting of comment generation.

• Contrastive Training Techniques: One point we made in our discussion of benchmark set results
was that the setting was more challenging than the model encountered during training. Because
differences before and after changes requested were minor, a successful model would need to be
able to differentiate small details in the final outcome. One potential approach to achieving this
capability is to incorporate a contrastive loss into the training procedure, so the model makes
a stronger distinction between classes when the content is similar. Choi et al. have recently
demonstrated the promise of this approach in the coding domain, and these results would likely
be applicable in this setting as well.[4]

• Broad Spectrum or Focused Training: As discussed in chapter 6, different projects have different
standards on what comment consistency entails. Future work might revisit the hypothesis that a
model can improve from training on many projects as opposed to being targeted at a single project
or organization. In other words, sacrificing some level of generality for higher performance on
a small set of repositories could be achievable. While we showed that a model trained on all 4
programming languages scores more highly than a model trained on only one language, we did
not test against a model that was only focused on a handful of code repositories.

• Augmented Input Context: A major shortcoming of our presented results is an overall less than
stellar performance in both the automatically mined test set and in the manually curated bench-
mark set. We identified several likely causes in chapter 6, including a possible lack of adequate
context for an informed decision. For example, 44% of all example methods from Java consisted
of only a single statement. We believe that future work can look toward techniques to effectively
expand the input with surrounding context that could help the model make a determination
where the method body itself does not have enough information. For instance, the model could
be given the entire surrounding class, or code file, or references to called subroutines could be
inlined in the input to the model so their contents are also available for prediction.

• Targeted Social Study: One limitation in our project was the lack of response on our survey. Al-
though we were still able to draw some conclusions about our work, more detailed qualitative
opinions could clarify our results in the context of other research. Future work can likely gain
more qualitative insights on code and comment consistency by targeting questions directly at
developer groups or individuals. For example, Steinmacher et al. received 24 open-ended ques-
tionnaire responses from a survey sent to 19 open source project mailing lists.[40] In this case,
we would like to judge the relative perceived importance of fixing comment consistency against
other code comprehension issues such as excessive function redirection. It would also be valu-
able to fully test the hypothesis that developers indeed respond positively to a classification-only
model that could identify potential mistakes without fixing them on its own.
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Appendix

A.1 Data Filtering Examples

In this appendix we include some examples of potential functions that were filtered out of our dataset.
The reason for filtering is described in each code block’s caption.

//go : bu i ld ! ignore_autogenerated
2 // +bu i ld ! ignore_autogenerated

// Code generated by c o n t r o l l e r −gen . DO NOT EDIT .

package v1beta1
7

import (
" k8s . io / api / core /v1 "
runtime " k8s . io /apimachinery/pkg/ runtime "

)
12

// DeepCopyInto i s an autogenerated deepcopy funct ion , copying the rece i ve r , wr i t i ng in to
out . in must be non−n i l .

func ( in *AdminServerServ icePol i cy ) DeepCopyInto ( out *AdminServerServ icePol i cy ) {

*out = * in
i f in . Annotat ions != n i l {

17 in , out := &in . Annotations , &out . Annotat ions

*out = make(map[ s t r i n g ] s t r i n g , len (* in ) )
f o r key , va l := range * in {

(*out ) [ key ] = va l
}

22 }
}

Listing A.1: Generated pravega/zookeeper-operator: api/v1beta1/zz_generated.deepcopy.go

// Code generated by gi thub . com/Khan/ genql ient , DO NOT EDIT .
2

package main

import (
" contex t "

7 " time "

" g i thub . com/Khan/ genq l i en t /graphql "
)

12 // __getUser Input i s used i n t e r n a l l y by genq l i en t
type __getUser Input s t r u c t {

Login s t r i n g ‘ j son : " Login " ‘
}

17 // GetUser re tu rn s getUserResponse . User , and i s u se fu l f o r acce s s ing the f i e l d v ia an
i n t e r f a c e .

func ( v *getUserResponse ) GetUser () getUserUser { re turn v . User }

Listing A.2: Generated Khan/genqlient: example/generated.go
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2 /**
* Move the popover to the |placement| p o s i t i o n of the o b j e c t loca ted on the | r e c t | .

*
* @param popover {Object } The popover o b j e c t to be moved .

* @param placement { S t r ing } The r e l a t i v e p o s i t i o n to move the popover − top | bottom | l e f t
| r i g h t .

7 * @param a l i g n { S t r ing } The way the popover should be a l igned − cente r | l e f t | r i g h t .

* @param r e c t { Cl i en tRec t } The C l i en tRec t of the o b j e c t to move the popover around .

* @param t r i a n g l e {Object } The element tha t conta ins the popover ’ s t r i a n g l e . This can be
n u l l .

*/
func t ion move( popover , placement , a l ign , rec t , t r i a n g l e ) {

12 var conta inerRec t ;
var popoverRect = getBoundingCl ientRect ( popover [0 ]) ;
var popoverRight ;
var top , l e f t ;
// . . .

17 }

Listing A.3: Duplicated, nohros/nsPopover: src/nsPopover.js and nohros/nsPopover:
example/nsPopover.js

// TODO: c lean up a f t e r PR#138 i s merged and t e s t e d h t tp s :// gi thub . com/GoogleCloudPlatform/
gcping/ p u l l /138

// EndpointsFromServer i s used by the c l i to generate an Endpoint map
3 // using j son served by the gcping endpoints .

func EndpointsFromServer ( c tx contex t . Context , endpointsURL s t r i n g ) (map[ s t r i n g ] Endpoint ,
e r ro r ) {

req , e r r := ht tp . NewRequestWithContext (
ctx ,
h t tp . MethodGet ,

8 endpointsURL ,
n i l ,

)
i f e r r != n i l {

re turn n i l , e r r
13 }

resp , e r r := ht tp . D e f a u l t C l i e n t . Do( req )
i f e r r != n i l {

re turn n i l , e r r
}

18 defer resp . Body . Close ()
i f resp . StatusCode != ht tp . StatusOK {

re turn n i l , fmt . E r r o r f ( "%v %s " , resp . Status , endpointsURL )
}
e := make(map[ s t r i n g ] Endpoint )

23 decoder := j son . NewDecoder( resp . Body)
i f e r r := decoder . Decode(&e ) ; e r r != n i l {

re turn n i l , e r r
}
re turn e , e r r

28 }

Listing A.4: Code with technical debt comment GoogleCloudPlatform/gcping:
internal/config/endpoints.go

// DialSlashGraphQLEndpoint i s deprecated and w i l l be removed in v21 .07 r e l e a s e . For more
d e t a i l s ,

2 // see : h t tp s :// d i s c u s s . dgraph . io / t / regarding−s lash−cloud−dgraph−endpoints−in−the−c l i e n t s
/13492

// DialSlashGraphQLEndpoint i s deprecated , as i t l eak s GRPC connect ions .
// Please use Dia lS lashEndpoint in s t ead
func DialSlashGraphQLEndpoint ( endpoint , key s t r i n g ) (*Dgraph , e r ro r ) {

conn , e r r := Dia lS lashEndpoint ( endpoint , key )
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7 i f e r r != n i l {
re turn n i l , e r r

}
dc := api . NewDgraphClient ( conn )
dg := NewDgraphClient ( dc )

12 re turn dg , n i l
}

Listing A.5: Deprecated dgraph-io/dgo: client.go

A.2 Submitted Pull Requests

1. https://github.com/hmcts/civil-service/pull/2869

2. https://github.com/ansys/pyaedt/pull/3128

3. https://github.com/chaoss/augur/pull/2442

4. https://github.com/Dallinger/Dallinger/pull/5293

5. https://github.com/demisto/content/pull/27489

6. https://github.com/Flexget/Flexget/pull/3796

7. https://github.com/gdsfactory/gdsfactory/pull/1790

8. https://github.com/cupy/cupy/pull/7655

9. https://github.com/DLR-RM/stable-baselines3/pull/1567

10. https://github.com/CircuitVerse/CircuitVerse/pull/3834

11. https://github.com/salesforce/lwc/pull/3593

12. https://github.com/benthosdev/benthos/pull/1997

13. https://github.com/Praqma/helmsman/pull/807

14. https://github.com/spacemeshos/go-spacemesh/pull/4666

15. https://github.com/Versent/saml2aws/pull/1089

16. https://github.com/go-gorm/gen/pull/906

17. https://github.com/deso-protocol/core/pull/574

18. https://github.com/chanzuckerberg/fogg/pull/889

19. https://github.com/sensu/sensu-go/pull/5027

20. https://github.com/zalando-incubator/kubernetes-on-aws/pull/6100
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